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We introduce a variational method for approximating distribution functions of dynamics with a ‘‘Liouville
operator’’ L̂, in terms of anonequilibrium action functionalfor two independent~left and right! trial states.
The method is valid for deterministic or stochastic Markov dynamics and for stationary or time-dependent
distributions. A practical Rayleigh-Ritz procedure is advanced, whose inputs are a finitely parametrizedAnsatz
for the trial states, leading to a ‘‘parametric action’’ for their evolution. The Euler-Lagrange equations of the
action principle are Hamiltonian in form~generally noncanonical!. This permits a simple identification of fixed
points as critical points of the parametric Hamiltonian. We also establish a variational principle for low-order
statistics, such as mean values and correlation functions, by means of theleast effective action.The latter is a
functional of the given variable, which is positive and convex as a consequence of Ho¨lder realizability in-
equalities. Its value measures the ‘‘cost’’ for a fluctuation from the average to occur and in a weak-noise limit
it reduces to the Onsager-Machlup action. In general, the effective action is shown to arise from the nonequi-
librium action functional by a constrained variation. This result provides a Rayleigh-Ritz scheme for calculat-
ing just the desired low-order statistics, with internal consistency checks less demanding than for the full
distribution.@S1063-651X~96!02710-9#

PACS number~s!: 02.50.2r, 05.40.1j, 05.45.1b

I. INTRODUCTION

The Rayleigh-Ritz variational method is a well-
established technique in quantum mechanics~e.g., see@1#!.
In this method one solves approximately the stationary
Schrödinger equation by making a physically motivated trial
Ansatzfor the ground-state wave function and then varying
the energy-expectation functional with respect to its param-
eters. A similar method is available for solving the time-
dependent Schro¨dinger equation, based upon the Dirac-
Frenkel dynamic variational principle@2–5#. These methods
are among the very few tools in the arsenal of theoretical
physics able to assault systematically strong-coupling prob-
lems of quantum dynamics. They are especially useful in
quantum field theory and many-body theory, where alterna-
tive numerical approaches are expensive or unfeasible. In
some cases, such as the BCS theory of superconductivity, the
variational principle has been the stepping stone to an exact
solution of the problem.

In our opinion, nonequilibrium statistical mechanics has
been lacking a variational principle of the same flexibility
and scope as in quantum theory, capable of determining the
probability density function~PDF! for both the steady-state
and the time-dependent solution to the initial-value problem.
This is particularly true for problems such as high Reynolds
number turbulence and large scale dynamics of multiphase
fluids, where there is no small parameter in which to make a
perturbation expansion or asymptotic development and
strong fluctuations dominate the phenomena on a wide range
of length scales. An obvious analogy exists between Schro¨-
dinger’s equation for the wave function and theLiouville
equationfor the PDF in the nonequilibrium problems:

] tP5L̂P. ~1.1!

This analogy has been used before to express classical sta-

tistical dynamics as a formal quantum field theory in the
work of Martin, Siggia, and Rose@6#. It was noted in@6# that
variational principles could be formulated, without any fur-
ther details. However, a mathematical obstacle exists to ap-
plying by analogy the quantum principles because the formal
‘‘Hamiltonian’’ L̂ is generally non-Hermitian for the dissipa-
tive dynamical systems of interest. Variational methods of
the standard form as in quantum mechanics have been em-
ployed in special cases whereL̂ can be transformed to a
Hermitian form @7–9# or else based upon the Hermitian
squared operatorL̂†L̂ @7,10#. These methods seem to be ei-
ther too restrictive or too cumbersome to be as useful as the
corresponding quantum principles. Recently, we have ob-
served in the turbulence context that a variational method
may be developed for nonequilibrium dynamics, which pre-
serves the principal advantages of the quantum method@11#.
The key idea in the recent formulation is to vary jointly over
independent left and right trial states. Although this
Rayleigh-Ritz method seems to be most natural for a non-
Hermitian operator, it does not seem to have been previously
used for nonequilibrium dynamics. It is our purpose here to
develop this method in a general context and in some formal
detail.

One advantage of the variational method in our formula-
tion is that it yields, by a procedure ofconstrained variation,
a characterization of theeffective actionfor any selected sta-
tistic of interest, such as a mean value or a two-point corre-
lation. The effective action is a non-negative, convex func-
tional whose minimum is achieved by the true ensemble-
average value. In quantum field theory the concept has it
roots in the early work of Heisenberg and Euler@12# and
Schwinger@13# in QED. In nonequilibrium statistical me-
chanics, the first such action principle seems to have been
Onsager’s ‘‘principle of least dissipation’’@14#, which ap-
plies to systems subject to thermal or molecular noise, gov-
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erned by a fluctuation-dissipation relation. A formulation of
the least-dissipation principle by an action functional on his-
tories was developed by Onsager and Machlup@15#. The
effective action we consider coincides in a weak-noise limit
with the Onsager-Machlup action, as discussed some time
ago by Graham@16#. For vanishing noise, a path-integral
formula for the effective action can be evaluated by steepest
descent, yielding the ‘‘classical’’ action of Onsager-
Machlup. However, in the strong-noise case, efficient calcu-
lational tools remain to be developed. We show here that the
Rayleigh-Ritz method provides one such computational
scheme. The basis of this method is a generalization of Sy-
manzik’s theorem in Euclidean field theory@17# ~see also
@18#!, which characterizes the static effective action, or, ‘‘ef-
fective potential,’’ by a constrained variation of the quantum
energy-expectation functional. This theorem has been ex-
tended by us to Martin-Siggia-Rose field theory with a non-
Hermitian Hamiltonian operator@11#. Here we shall, for
completeness, briefly recapitulate that result and then ex-
pound in detail the corresponding Rayleigh-Ritz method. We
also establish a Symanzik-type theorem for the time-
dependent effective action, extending the earlier result of
Jackiw and Kerman in quantum theory@19# to the initial-
value problem in nonequilibrium statistical dynamics.

The methods we develop here are quite general and apply,
indeed, to the solution of any large scale stochastic system,
not only those in nonequilibrium statistical physics, but also
to population dynamics in biology, to stochastic market mod-
els in mathematical finance, etc. The advantages of a varia-
tional scheme are well known. For example, we quote the
following:

The great virtue of the variational treatment, ‘‘Ritz’s
method,’’ is that it permits efficient use in the process of
calculation, of any experimental or intuitive insight which
one may possess concerning the problem which is to be
solved by calculation. It is important to realize that this is
not possible, or possible to a much smaller extent, if one
performs the calculation by using the original form of the
equations of motion . . . . Ritz’s method, on the other
hand, is definitely a method of successive approximations,
and one which converges better in the later stages of the
approximation. Any information therefore which one may
possess—no matter whether it comes from experiments,
from intuition, or from general experience obtained in
previous works on similar problems— can be made useful
by using it in formulating the point of departure, the ‘‘ze-
roeth @sic# approximation’’ @20#.

The present paper elaborates the theoretical foundation of
such a variational scheme for stochastic dynamical systems.
In future work we shall apply the method to various concrete
systems of practical interest. In particular, the paper@21#
demonstrates the feasibility of the Rayleigh-Ritz method for
numerical computation of the effective potential and@22#
applies the action principle to the problem of moment clo-
sures in turbulence modeling.

II. THE VARIATIONAL METHOD FOR DISTRIBUTIONS

Our problem is to calculate the probability distribution
functions, denoted byP, for nonequilibrium Markov dynam-
ics, governed by an equation of the form of Eq.~1.1!, where

L̂ is the ~forward! Markov generator. Concrete examples of
practical interest are the nonequilibrium master equations
@23# and, as a particular case, the Fokker-Planck equations
@7#, with

L̂52
]

]xi
@Ki~x!•#1

1

2

]2

]xi]xj
@Di j ~x!•#, ~2.1!

in whichK is the drift vector andD is the diffusion tensor. A
degenerate case of the latter of special interest occurs for
zero noise (D50), which is

L̂52
]

]xi
@Ki~x!•#, ~2.2!

the ‘‘Liouville operator’’ of the deterministic dynamical sys-
tem ẋ5K (x).

We develop here a simple variational method to calculate
approximately the solutions of Eq.~1.1! for P, both for the
stationary PDFPs and for time-dependent solutionsPt with
prescribed initial dataP0 . Our methods are analogous to
Rayleigh-Ritz procedures traditional in quantum mechanics,
but with a modification due to the fact that the operatorL̂ is
non-self-adjoint:

L̂†ÞL̂. ~2.3!

Although the spectra ofL̂ andL̂† are the same~becauseL̂ is
a real operatorL̂*5L̂), their eigenstates are distinct. Equiva-
lently, the left and right eigenstates ofL̂ are distinct@1,24#.
This is particularly true for the ‘‘ground states’’

L̂uVR&50 L̂†uVL&50. ~2.4!

Because of the fundamental asymmetry of the problem, Hil-
bert space orL2 methods are not as useful as in quantum
theory. Instead, the standard mathematical formulation~see
@25#! is to takeL̂ as an operator onL1, considered as a space
of ‘‘normalizable states,’’ andL̂† as an operator onL`, con-
sidered as a space of ‘‘bounded observables.’’@The math-
ematical notation is, unfortunately, the opposite of that gen-
erally adopted in the physics literature: what we have called
L̂,L̂† are in mathematics usually denoted asL* ,L ~forward
and backward Markov operators, respectively!#. Although
the inequality of the two ground states is a complication,
there are special features that largely compensate for this.
The ‘‘right ground state’’VR is the main unknown of the
problem, the stationary PDFPs , and it can always be taken
to be non-negative

VR~x!>0. ~2.5!

This is part of the statement of the Perron-Frobenius theo-
rem, sinceetL is an operator with strictly positive kernel; see
@26#, or Theorem 3.3.2 of@27#. On the other hand, the ‘‘left
ground state’’ is knownexactly a priori:

VL~x![1. ~2.6!

This latter fact turns out to be of great utility in our method.
We discuss first the stationary problem and thereafter con-
sider the time-dependent case.
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A. Stationary distributions

Define a functionalH of left and right state vectors as

H@CR,CL#[^CL,L̂CR&. ~2.7!

Then it is easy to see thatVR,VL are uniquely characterized
as the joint extremal point of the functionalH

dH@CR,CL#50↔~CR,CL!5~VR,VL!. ~2.8!

In fact,

dH@CR,CL#5^dCL,L̂CR&1^CL,L̂dCR&50 ~2.9!

if and only if

L̂uCR&50, L̂†uCL&50. ~2.10!

As stated above, we takeCRPL1 ~‘‘states’’! andCLPL`

~‘‘observables’’!, with

^CL,CR&[E dxCL~x!*CR~x!. ~2.11!

The ‘‘inner product’’ notation is always used in this paper as
the canonical sesquilinear association ofCRPL1 and CL

PL` with the complex number̂CL,CR& defined in Eq.
~2.11!.

This simple variational characterization of the ground
states can be made the basis of a Rayleigh-Ritz method of
approximation. To initiate this method, one must maketrial
Ansätze

CR5CR~a!, CL5CL~a! ~2.12!

for the ground states.~Since we knowVL to be exactly equal
to one, it may seem unnecessary to make anAnsatzfor it at
all. However, variation over the ‘‘observables’’ is required to
characterize the ‘‘state,’’ or right ground stateVR.) The vec-
tor a5(a1 , . . . ,aN) denotes a set ofN real parameters
~where possiblyN5`). In certain cases, we wish to have
some parameters dependence only on one of the vectors
CH,H5L,R and we denote the corresponding parameters as
aH5(a1

H , . . . ,aNH
H ) for H5L,R respectively. We then use

a to denote only the common parameters in both trial vec-
tors. An interesting special case is when there are no such
common parameters, i.e.,

CR5CR~aR!, CL5CL~aL!, ~2.13!

andNL5NR, i.e., with equal numbers of the left and right
parameters. TheAnsätze provide an explicit, but arbitrary,
reduction of the original variational problem in an infinite-
dimensional function space to an analogous problem in
N-dimensional Euclidean space. A given assumed form of
the trial Ansatzprovides, in essence, a ‘‘nonlinear projec-
tion’’ of the original time-independent stationarity equations.
This is the same general strategy proposed explicitly by
Bayly under the term ‘‘parametric PDF closures’’@28# ~and
used implicitly by others before!. Here we simply explain
how this strategy may be implemented variationally.

For any particularAnsatz, we denote

H~a![^CL~a!,L̂CR~a!&, ~2.14!

which we call the(parametric) Hamiltonian. We may now
seek the extremal, or critical, points ofH:

]H
]a i

~a* !50. ~2.15!

This condition may be written more explicitly as

^c i
L~a* !,L̂CR~a* !&1^CL~a* !,L̂c i

R~a* !&50
~2.16!

for eachi51, . . . ,N, where, in general, forH5L,R

c i
H~a!5

]CH

]a i
~a!. ~2.17!

One may take the corresponding state vectors as the approxi-
mations to the ground states:

V
*
R~x!5CR~x;a* !, V

*
L ~x!5CL~x;a* !. ~2.18!

In the special case Eq.~2.13! with no common parameters,
the variational equations become simply

05
]H
]a i

R5^CL~a
*
L !,L̂c i

R~a
*
R !& ~2.19!

and

05
]H
]a i

L 5^c i
L~a

*
L !,L̂CR~a

*
R !&, ~2.20!

with i51, . . . ,N (5NR5NL). We may also write out the
general equation~2.16! more explicitly as separate equations
for the variations under each ofaR, aL, anda. However, we
have not found this version of the equations to be as useful,
so that we relegate it to the Appendix.

In general, the functionH(a) may have more than one
critical point. Somea priori criteria for selection of the criti-
cal point~s! of interest arise from theexact information for
the problem thatH@VR,VL#50 and thatVL[1. Hence,
among the possible critical points, we should only accept
those for which

H~a* !'0 ~2.21!

and

CL~x;a* !'1. ~2.22!

The second condition generally implies the first. Hence we
should only accept those critical points for whichVL

* is
close to the constant 1. We refer to such critical points as
‘‘acceptable.’’ Because of the acceptability condition, we see
that theAnsätze need really only explore the region near
CL'1. Thus we may, without loss of generality, assume that
a i
L!1 and expand to linear order

CL~a,aL!511(
i51

NL

a i
Lc i

L~a!, ~2.23!
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where, now, forH5L,R,c i
H(a,aH)5(]CH/]a i

H)(a,aH),
rather than Eq.~2.17!. Correspondingly,

H~aR,aL,a!5a i
L^c i~a!,L̂CR~a,aR!& ~2.24!

~summation convention implied!. To guaranteeCLPL`, we
should really take

CL~a,aL!5expF i(
i51

NL

a i
Lc i

L~a!G . ~2.25!

However, this leads to results equivalent to Eq.~2.23!.
It is useful to consider the special case Eq.~2.13! with no

common parameters, for which the variational equations
~2.19! and ~2.20! become simply

a i
L^c i

L ,L̂c j
R~aR!&50 ~2.26!

and

^c i
L ,L̂CR~aR!&50 ~2.27!

for i , j51, . . . ,N. If the matrix in Eq.~2.26! is nonsingular

det@^c i
L ,L̂c j

R~aR!&#Þ0, ~2.28!

then the first of the variational equations has as itsunique
solution

a
*
L [0. ~2.29!

In that case, Eq.~2.27! is the only remaining equation and it
determines the critical valuea

*
R . Thus the condition deter-

miningPs5VR in this approximation is the stationarity con-
dition

^L̂†c i
L&a

*
R50 ~2.30!

for the finite set of moment functionsc i
L , i51, . . . ,NL. In

that case, the variational method does not differ from the
projection of the dynamics onto a finite set of moments. If
one permits a more general dependence ofCL on the param-
etersaL than the linearAnsätzeEq. ~2.23!, then the varia-
tional method does not generally coincide with the moment
projection. However, we see no advantage at this point to
allowing a nonlinear dependence onaL.

It is possible to obtain the moment projection condition in
a slightly more general form, i.e., so that the momentsc i

L

depend upon the same set of parametersa as the trial state
CR5CR(a). Formally, we takeNR50 and N5NL. We
may obtain for theN parametersa determining equations of
the form

^c i
L~a!,L̂C j

R~a!&50 ~2.31!

or, equivalently,

^L̂†c i
L~a!&a50. ~2.32!

This is accomplished by making the variationalAnsätze

CL511(
i51

N

a i
Lc i

L~a!, CR5CR~a!. ~2.33!

There may be some advantage in permitting the moments to
vary along with the trial state. Hence this more general ver-
sion is worked out in the Appendix.

A simple example of suchAnsätze as discussed above
may be devised based upon atrial weight w5w(x), which is
a normalized probability density, and an adapted set ofor-
thogonal polynomials pn(x):

E dxw~x!pn~x!pn8~x!5dnn8. ~2.34!

See @29,30#. A natural form of the trialAnsatzthen takes
NR5NL ([N) and

CR~x;aR!5w~x! (
n50

N21

an
Rpn~x! ~2.35!

and

CL~x;aL!5 (
n50

N21

an
Lpn~x!. ~2.36!

This Ansatzis a simple case of the type of Eq.~2.13!, with
no common parameters. Here the stationarity condition be-
comes simply

LNa
*
R50, a

*
L LN50, ~2.37!

with

~LN!nn8[^pn ,L̂~wpn8!& ~2.38!

for 0<n, n8,N. In other words, thea
*
R anda

*
L should be,

respectively, right and left eigenvectors of the matrixLN
with eigenvalue zero. It is easy to check that a left eigenvec-
tor of LN for the eigenvalue zero always exists and is given
simply by

a
* n
L 5dn,0 . ~2.39!

It is possible to generalize the orthogonal polynomialAnsatz
by choosing the trial weightw(a), depending upon some
additionalM parametersa i , i51, . . . ,M . In that case, the
adapted orthogonal polynomials will depend also upona.
After initial variation overaR,aL, a second variation may be
made to optimize the choice ofa.

An advantage of the orthogonal polynomial scheme is that
it may converge in the limitN→`; for an example, see@21#.
Some sufficient conditions for convergence are discussed in
@11#. It is necessary for convergence that
*dx@Ps

2(x)/w(x)#,` @29#. Unfortunately, the expansion
AnsatzEq. ~2.35! for the state need not be positive at all
values ofx. Instead,realizability can be guaranteed by mak-
ing anAnsatz

CR5w~a,aR!, ~2.40!

in which

w~x;a,aR!>0, E dxw~x;a,aR!51. ~2.41!
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This ensures realizability whenever such anAnsatz, along
with Eq. ~2.23!, yields an acceptable critical point. The cri-
terion of realizability is especially important for a few pa-
rameterAnsatz, incorporating certain physical insights and
ideas as a test of those beliefs. On the other hand, for the
case whereN→`, it may be preferable to impose the crite-
rion of convergence. This might be done even at the price of
loss of realizability if convergence for a statistic of particular
interest is rapid enough. The dual criteria of realizability and
convergence ought to be regarded as complementary in their
applicability.

B. Time-dependent distributions

We first observe how the evolution equation~1.1! may be
formulated variationally. Let us define

G@CR,CL#[E
0

`

dt^CL~ t !,~] t2L̂ !CR~ t !&, ~2.42!

as a functional of ‘‘trajectories’’CH(t), H5L,R. We refer
to this functional as thenonequilibrium action. It is easy to
see formally that the stationarity condition

dG@CR,CL#50 ~2.43!

is equivalent to

~] t2L̂ !uCR~ t !&50, ~] t1L̂†!uCL~ t !&50, ~2.44!

the variation being performed with the constraint

^CL~`!,CR~`!&5^CL~0!,CR~0!&. ~2.45!

In other words, a pair of trajectories is an extremal point of
the action if and only if the ‘‘right trajectory’’ is a solution of
the evolution equation~1.1! and the ‘‘left trajectory’’ is a
solution of the adjoint equation, subject to the ‘‘end-point
constraint’’ Eq. ~2.45!. It is important to note a particular
exact solution of the adjoint equation

CL~x,t ![1. ~2.46!

In that case, the end-point constraint becomes

E dxCR~x,`!5E dxCR~x,0!, ~2.47!

which is automatically satisfied by any solution of the evo-
lution equation. In other words,CL(t)[1 together with any
solution CR(t) of the evolution equation provides an ex-
tremal point of the actionG@CR,CL#. In this important spe-
cial caseG@CR,CL#50. We may note the equivalent form
of the nonequilibrium action

G@CR,CL#[E
0

`

dt$^CL~ t !,ĊR~ t !&2H@CR~ t !,CL~ t !#%,

~2.48!

which shows thatCL is formally a momentumPR canoni-
cally conjugate toCR. In that case, the evolution equation
and its adjoint are formally restated as ‘‘Hamilton’s equa-
tions’’

ĊR~x!5
d

dCL~x!
H@CR,CL#,

ĊL~x!52
d

dCR~x!
H@CR,CL#. ~2.49!

This makes it obvious that the Hamiltonian is invariant along
an extremal set of trajectories of the action Eq.~2.48!.

In the same manner as for the stationary case, we may use
the previous variational principle as the basis of an approxi-
mation method for the time-dependent PDF. The basic idea
is similar to time-dependent variational principles of stan-
dard use in quantum mechanics@2,3#, going back to the early
work of Dirac @4# and Frenkel@5#. The procedure is initiated
by making trialAnsätze for the trajectories, in the form

CH~ t !5CH
„a~ t !…, ~2.50!

with H5L,R. In other words, the reduction to a finite num-
ber of degrees of freedom is made with the same functional
form as for the stationary case and all of the time dependence
is contained in the parametersa(t). This is the same idea as
in the general method of parametric PDF closure, except that
here we derive equations for the closure parameters varia-
tionally. Indeed, we may substitute the trial trajectories into
the action to obtain a reduced orparametric action

G@a#[E
0

`

dt@p i„a~ t !…ȧ i~ t !2H„a~ t !…#, ~2.51!

with

p i~a![ K CL~a!,
]

]a i
CR~a!L . ~2.52!

The Euler-Lagrange equations of the variational principle
have the special form

$a i ,a j%ȧ j5
]H
]a i

, ~2.53!

in which

$a i ,a j%[ K ]CL

]a i
~a!,

]CR

]a j
~a!L 2 K ]CL

]a j
~a!,

]CR

]a i
~a!L .

~2.54!

This is an infinite-dimensional generalization of the
Lagrange bracketof classical mechanics; see@3# and@31#, p.
250. It is easily checked to have the properties

$a j ,a i%52$a i ,a j% ~2.55!

and

]

]a i
$a j ,ak%1

]

]a j
$ak ,a i%1

]

]ak
$a i ,a j%50. ~2.56!

Let us first verify the stated form of the Euler-Lagrange
equations~2.53!. The verification follows from the result that
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d

da i
E dtp i~a!ȧ i5$a i ,a j%ȧ j . ~2.57!

By a simple calculation

d

da i
E dtp i~a!ȧ i5 K ]CL

]a i
,
]CR

]a j
L ȧ j1 K CL,

]2CR

]a i]a j
L ȧ j

2
d

dt
p i~a!. ~2.58!

However,

d

dt
p i~a!5 K ]CL

]a j
,
]CR

]a i
L ȧ j1 K CL,

]2CR

]a i]a j
L ȧ j .

~2.59!

This yields Eq.~2.57!. The property Eq.~2.55! of Lagrange
brackets is obvious. Equation~2.56! follows from the expres-
sion ~2.54! by a simple calculation.

If the matrix of Lagrange brackets ($a i ,a j%) is nondegen-
erate, that is, det($a i ,a j%)Þ0, then we may introduce a cor-
respondingPoisson bracket@a i ,a j # as the elements of the
inverse matrix

~@a i ,a j # !5~$a i ,a j%!21. ~2.60!

It is straightforward to show that the Poisson bracket has
properties implied by those of the Lagrange bracket Eqs.
~2.55! and ~2.56!, namely,

@a j ,a i #52@a i ,a j # ~2.61!

and

†a i ,@a j ,ak#‡1†a j ,@ak ,a i #‡1†ak ,@a i ,a j #‡50.
~2.62!

The latter is the well known Jacobi identity. The bracket may
be extended to arbitrary functionsf andg of coordinatesa
via the definition

@ f ,g#[(
p,q

] f

]ap

]g

]aq
@ap ,aq#. ~2.63!

With this definition, the Poisson bracket satisfies Eqs.~2.61!
and~2.62! for all functions. Note that the Jacobi identity for
general functions follows by the argument of@31#, p. 257.
The parametric equations may then be written as

ȧ i5@a i ,H#, ~2.64!

which are in Hamiltonian form. In general, canonically con-
jugate variables do not exist for this Hamiltonian~i.e., the
system is a noncanonical Hamiltonian!. Notice that the Pois-
son brackets@a i ,a j # of the system depend only upon the
parametrization~i.e., the trialAnsatz! and that the dynamics
enters solely through the HamiltonianH(a). We now see
very simply that the fixed points of the parametric evolution
equations coincide with the critical points of the correspond-
ing Hamiltonian.~Even without the nondegeneracy condition
the fixed points would include all of the critical points of
H, although there might be additional fixed points.! Further-

more, the parametric Hamiltonian is an integral of motion for
the evolution equations. Notice that if the nondegeneracy
condition failed at finite time, then the solutions themselves
to the parametric equations might become ill defined.

A case of special interest is that in which
CH5CH(aH), H5L,R, with an equal number ofaR and
aL parameters. Observe that the Lagrange brackets are now
given simply as

$a i
L ,a j

R%5^c i
L~aL!,c j

R~aR!& ~2.65!

and

$a i
R ,a j

L%52^c j
L~aL!,c i

R~aR!&, ~2.66!

with all other brackets vanishing. It is easy to check that the
variablespR introduced as

p i
R~aR ,aL![K CL~aL!,

]

]a i
RCR~aR!L ~2.67!

satisfy

@a i
R ,p j

R#5d i j , ~2.68!

that is,pR is the momentum canonically conjugate toaR. If
p i
R(aR,aL)5p i

R is invertible at each fixedaR for aL in
terms ofpR andaR, then by a change of variables the sys-
tem has canonical Hamiltonian form.

As in the static case, there is a criterion of acceptability of
solutions, which requires thatCL(t)'1 for all time t. Let us
consider first, for simplicity, the previous special case with
CH5CH(aH), H5L,R. Just as for the statics, we are mo-
tivated to adopt the linearAnsatz

CL~x;aL!511(
i51

N

a i
Lc i

L~x!. ~2.69!

In this case, the equations foraL(t) become

2^c j
L ,c i

R~aR!&ȧ j
L5a j

L^c j
L ,L̂c i

R~aR!&, ~2.70!

i51, . . . ,N, which have as anexact solution

aL~ t ![0. ~2.71!

Within this sameAnsatzthe equation remaining to be solved
for aR(t) reduces to

^c i
L ,c j

R~aR!&ȧ j
R5^c i

L ,L̂CR~aR!&. ~2.72!

For this case, a further simplification is possible by introduc-
ing moment averages

mi~aR![^c i
L&aR ~2.73!

and thedynamical vector

Vi~aR![^L̂†c i
L&aR. ~2.74!

Because $aL,aR%5(]mi /]a j
R)(aR) for the Ansatz Eq.

~2.69!, it follows that
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$a i
L ,a j

R%ȧ j
R5

]mi

]a j
R ȧ j

R5ṁi . ~2.75!

Therefore, the equation of motion Eq.~2.72! expressed in
terms of the momentsm becomes simply

ṁi5Vi~m!, ~2.76!

whereV(m)[V„a(m)…. In this way we see how ‘‘moment
closures,’’ as they have been traditionally employed in non-
equilibrium dynamics, are obtained in our scheme. Closure is
achieved by calculating all averages with respect to the PDF
Ansatz P(x,t)5CR

„x;aR(t)… and then eliminating the pa-
rametersaR(t) in terms of the~equal number of! moments
m(t). As we shall discuss in Sec. III, this variational method
of moment closure has definite theoretical advantages.

More generally, we may employ theAnsatzEq. ~2.33!,
CL511( i51

Na i
Lc i

L(a), and CR5CR(a), allowing for
some parameter dependence of the moment functions
c i
L(a). This choice is considered in the Appendix, so here

we just report the results. As with the case previously con-
sidered, it is not hard to check thataL(t)[0 is an exact
solutionof its equation. The remaining equation fora takes
the form

$a i
L ,a j%ȧ j5Vi~a!, ~2.77!

with

Vi~a![^L̂†c i
L~a!&a , ~2.78!

generalizing Eq.~2.74!, and

$a i
L ,a j%5 K c i

L~a!,
]CR

]a j
~a!L . ~2.79!

By an easy calculation one can see also that

$a i
L ,a j%5

]

]a j
^c i

L~a!&a2K ]c i
L

]a j
~a!L

a

. ~2.80!

A comparison with Eq.~2.11! in the work of Bayly @28#
reveals that the equation~2.77! obtained via theAnsatzEq.
~2.33! is equivalent to the dynamical equations obtained by
‘‘moment projection’’ in the parametric PDF closure
scheme. Here these equations are simply shown to have a
variational formulation.

As in the static case, a usefulAnsatzis provided by a
fixed trial weightw(x) and orthogonal expansions

CR~aR!5w(
n50

N21

an
Rpn ~2.81!

and

CL~aL!5 (
n50

N21

an
Lpn . ~2.82!

In that case it is easy to calculate that

$an
L ,am

R%52$am
R ,an

L%5dnm ~2.83!

and

H~aR,aL!5(
n,m

an
L~LN!nmam

R . ~2.84!

Therefore we see thataR andpR5aL are canonically con-
jugate and the parametric action is a quadratic form

G@aR,aL#5E dt@aL
–ȧR2aL

–LNaR#. ~2.85!

In consequence, the evolution equations are linear

ȧR5LNaR, ȧL52aLLN ~2.86!

for this particularAnsatz. The second equation has exact so-
lution an

L(t)[dn0 . The first equation is a standard Galerkin
truncation of the linear Liouville dynamics Eq.~1.1!.

III. CONSTRAINED VARIATION
AND EFFECTIVE ACTION

A. The principle of least effective action

For spatially extended systems, or for any system with
large numbers of degrees of freedom, it is certainly too am-
bitious to try to calculate the full PDF. Such a calculation
would put any trialAnsatzto an extremely severe test and
could hardly be expected to succeed, in general, with a few
number of parameters. In any case, the physical interest is
usually in some special low-order statistic, such as a mean
field or a correlation function. Such quantities are repre-
sented by random variablesz on microscopic phase space,
that is, by functionsz5z(x) of the dynamical variablesx. In
practice, one will be mostly interested in some simple low-
order moments of the dynamical variablesx themselves, e.g.,
z5x, x^x, etc. It should be possible to successfully calcu-
late a statistic of this type with a simpler Ansatz with just a
few parameters, if those are insightfully chosen. However,
the variational method, as we have described it so far, allows
one to calculate such a low-order statistic only as the by-
product of calculating the full distribution. One would like to
have a more direct variational method for any statistic of
interest.

In fact, it is well known in various contexts that statistical
quantities such as expectations and correlations, are charac-
terized by a minimum principle for a certain functional. In
~Euclidean! field theory this functional is called the ‘‘effec-
tive action,’’ and was originally rigorously investigated by
Symanzik in @17#. In nonequilibrium statistical mechanics
the variational principle associated with the effective action
was pointed out some time ago by Graham@16#. The fact
that averages of suitable distributions are characterized by a
minimum principle is also standard in probability theory; see
Sec. 3 of@32#. Such a principle has a very general basis and
indeed its origin is the same as that of the familiar equilib-
rium variational principles of maximum entropy, minimum
free energy, etc. Closely related ideas have been exploited
recently to develop moment-closure hierarchies for kinetic
theories@33#. We shall give here a self-contained discussion
of the least-action principle, following the accounts in
@17,32#.
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The main requirement for its validity isfinite exponential
momentsof the statistical distribution. Let us denote byP the
probability measure onhistoriesof our stochastic dynamics.
Thus,Pt is just the projection~or marginal! at time t of the
distribution P. Then, what is required is that, integrating
over the ensemble of histories$x(t):2`,t,1`%,

E DP~x!e[ f,z~x!],`, ~3.1!

where f(t) is a real-vector valued test function and
(f,z)5*dtf(t)z(t). If Eq. ~3.1! holds, we may define

W@ f#[ lnF E DP~x!e~ f,z!G , ~3.2!

which is a cumulant-generating functional of the distribution
P. It is a consequence of the positivity of the distribution and
the Hölder inequality that

E DP~x!e[lf11~12l!f2 ,z]

<S E DP~x!e~ f1 ,z!D lS E DP~x!e~ f2 ,z!D 12l

, ~3.3!

for 0,l,1, or

W@lf11~12l!f2#<lW@ f1#1~12l!W@ f2#. ~3.4!

In other words,W@ f# is a globally convex functional of its
argument. Observe that this is a result just of a simple real-
izability inequality for the distributionP. The corresponding
conjugate convex functional is

G@z#5sup
f

$~ f,z!2W@ f#%. ~3.5!

This is the definition of theeffective actionfor z histories.
SinceG@z# is also globally convex under the assumption Eq.
~3.1!, it follows that it has an absolute minimum~possibly
nonunique ifG is not strictly convex!. In fact,

G@z#>0, G@ z̄#50, ~3.6!

where

z̄~ t !5E DP~x!z@x~ t !#. ~3.7!

The positivity of G follows from the fact that
(f,z)2W@ f#50 in Eq. ~3.5! for f50. Furthermore, by
Jensen’s inequality ln@*DP(x)e(f,z)#>(f,z̄). Thus (f,z̄)
2W@ f#<0 for all f and soG@ z̄#50. That the mean is char-
acterized as the point at whichG achieves its minimum is
just the precise statement of theprinciple of least effective
action.

All the derivations we have given for the distribution on
historiesP, could just as well be given for the single-time
stationary distributionPs . However, since the latter is hard
to specify, it is easier to work with a quantity derived from
the effective action introduced above, which is commonly
referred to as theeffective potential. This is obtained from

the full action by defining, for any time-independentz, the
time-extended historyzT(t) by

zT~ t ![H z if 0,t,T

z̄ otherwise.
~3.8!

Then the effective potentialV@x# is defined as the infinite-
time limit

V@z#5 lim
T→1`

G@zT#

T
. ~3.9!

The effective potential is appropriate to determine expected
values in the time-invariant ground state of the theory
VR5Ps .

The effective potential has a direct significance in terms
of the statistics of theempirical time average

z̄T[
1

TE0
T

dtz~ t !. ~3.10!

For an ergodic process, this random variable converges as
T→` to the ensemble average,z̄T→ z̄, almost surely in ev-
ery realization. However, fluctuations away from the ex-
pected behavior should furthermore occur with a small prob-
ability, decaying asymptotically for largeT as

Prob~ z̄T'z!;exp~2TV@z# !. ~3.11!

This is a refinement of the standard ergodic hypothesis. It
will hold when the limit in Eq.~3.9! exists or, equivalently, if
the similar limit limT→1`(1/T)W@hT#5l@h# exists. These
are standard results of ‘‘large deviations’’ in probability
theory @34,35#. In fact, what is in physics referred to as the
‘‘effective potential’’ coincides for stochastic dynamics with
the ~level-1! rate function in the Donsker-Varadhan large-
deviations theory for ergodic Markov processes. The proba-
bilistic interpretation of the effective potential seems to have
been first pointed out in quantum field theory by Jona-
Lasinio @36#. Such a large-deviations hypothesis as Eq.
~3.11! was conjectured some time ago by Takahashi for de-
terministic dynamical systems with sufficiently chaotic solu-
tions @37#, and rigorous theorems have been proved under
suitable hypotheses~e.g., see@38,39#!. In this context the
effective potential is simply related to the Kolmogorov-Sinai
entropy. The earliest origins of the above fluctuation hypoth-
esis in statistical physics appear in the ‘‘Onsager principle,’’
as discussed by Oono in@40#.

It follows from our assumptions that the effective poten-
tial is non-negativeV(z)>0, convex l1V(z1)1l2V(z2)
>V(l1z11l2z2), l11l251, and vanishes only at the en-
semble meanV( z̄)50. @The structure of the effective poten-
tial may be more complex if there is ‘‘ergodicity breaking’’
associated with multiple ergodic measures. In that case, there
may be a convex set of pointsz with a nonempty interior on
which V(z) vanishes. This would be the case if a so-called
nonequilibrium phase transition occurred. The important ap-
plications of the effective potential in quantum field theory
appeared precisely in this type of situation, where basic sym-
metries of the quantum Hamiltonian are spontaneously bro-
ken by the occurrence of multiple ground states. Similiar
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phenomena may be expected in infinite-volume nonequilib-
rium systems, especially in the parameter range after the first
bifurcation from a unique laminar solution but before the
transition to fully developed turbulence has occurred.# In
Sec. III B we develop a practical method for approximately
calculating the effective potential. Because of the connection
of the effective potential with fluctuations of the empirical
mean Eq.~3.11!, it is very unlikely that a closure approxi-
mation that violates the basic positivity and convexity prop-
erties of the effective potential can yield a reasonable result
for the ensemble average itself.

B. Variational characterization of effective potential

We now show how the effective potentialV@z# is related
to the HamiltonianH@CR,CL# discussed before by means of
a constrained variation. A similar result was proved by Sy-
manzik in Euclidean field theory@17#. In our case, a modifi-
cation is required associated with the non-self-adjoint char-
acter ofL̂. More precisely, we have the following.

Theorem 1.The effective potential

V@z#5 lim
T→1`

1

T
G@zT# ~3.12!

for a stationary Markov process is the value at the extremum
point of the functional

V@CR,CL#52H@CR,CL#, ~3.13!

varying over all pairs of state vectorsCR,CL subject to the
constraints

^CL,CR&51 ~3.14!

and

^CL,ẐCR&5z. ~3.15!

Here Ẑ is the operator of multiplication byz(x). Although
the original version of the theorem required just one trial
state, there now must betwo independent trial states.

Nevertheless, the proof is similar to the original one of
Symanzik @17#. Let VR5Ps , VL[1. Then the generating
functionalW@h# introduced above may be represented in the
operator formulation by

W@h#5 lnK VL,TexpS E
0

T

dtL̂h~ t ! DVRL , ~3.16!

whereT denotes time ordering~increasing from right to left!
and

L̂h~ t !5L̂1h~ t !–Ẑ. ~3.17!

No time dependence is required for the coordinate operators
because the exponential factors automatically introduce the
correct Heisenberg picture operators after differentiating and
settingh to zero. We note then that for astaticfield h in the
limit T→1`,

exp~W@hT# !5^VL,exp~TL̂h!V
R&

'^VL,VR@h#&^VL@h#,VR&exp~Tl@h# !,

~3.18!

wherel@h# is the eigenvalue of the ‘‘perturbed operator’’

L̂h5L̂1h–Ẑ ~3.19!

with the largest real partandVR@h#,VL@h# are the associ-
ated right and left ground-state eigenvectors

L̂huVR@h#&5l@h#uVR@h#& ~3.20!

and

L̂h
†uVL@h#&5l* @h#uVL@h#&. ~3.21!

Furthermore, we can see that

]W@hT#

]hn
5Tzn@h#1o~T!, ~3.22!

with

zn@h#5^VL@h#,ẐnV
R@h#&. ~3.23!

This can be obtained from the formula

exp~W@hT# !
]W@hT#

]hn
5 K VL,

]

]hn
exp~TL̂h!V

RL
5^VL,VR@h#&^VL@h#,VR&

3K VL@h#,
]

]hn
exp~TL̂h!V

R@h#L
1O~e2TDl!, ~3.24!

whereDl is the spectral gap between the real parts of the
ground-state eigenvalue and the next highest eigenvalue. We
have used the well known fact that, for any one-parameter
family of operatorsL̂(h) depending smoothly on a parameter
h,

]

]h
exp@ L̂~h!#5exp@ L̂~h!#w@2AdL̂~h!#F ]L̂~h!

]h G ,
~3.25!

where AdL̂ denotes the ‘‘adjoint operator’’ defined by the
commutator

~AdL̂ !@Ô#5@ L̂,Ô#, ~3.26!

and w(z) is the entire function w(z)5(ez21)/z
511(1/2!)z1(1/3!)z2s•••. See@41#. Since

^VL@h#,@ L̂h ,Ô#VR@h#&50 ~3.27!

for any operatorÔ, only the first term survives in the expan-
sion of w when substituted into the first term of formula
~3.24!. This yields Eq.~3.22!.
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Now let us consider the variational problem. If we incor-
porate the constraints by suitable Lagrange multipliers, then
the variational equation is just

d@2^CL,L̂CR&2h–^CL,ẐCR&1l^CL,CR&#50
~3.28!

or

^dCL,~ L̂h2l!CR&1^CL,~ L̂h2l!dCR&50. ~3.29!

In other words, there are infinitely many stationary points of
the functionalV@CR,CL# subject to the constraints. They
consist precisely of pairs (Cn

R@h#,Cn
L@h#) of eigenvectors of

L̂h ,

L̂huCn
R@h#&5ln@h#uCn

R@h#& ~3.30!

and

L̂h
†uCn

L@h#&5ln* @h#uCn
L@h#&, ~3.31!

corresponding to different branches of eigenvalues
ln@h#,n50,1,2, . . . . To be precise, we should consider the
stationary point corresponding to the branch with largest real
part for eachh, that is, the pair of ground-state eigenvectors
(VR@h#,VL@h#) introduced above. For small enoughh this
corresponds to the eigenvalue branch withl(0)50 because
the spectrum ofL̂ is all in the left half of the complexl
plane, Rel,0, except for a simple eigenvalue atl50. See
@25# and @26#. We refer to this as the ‘‘zero branch’’ of
eigenvalues.

Applying then the left eigenvector to the eigenequation of
the right vector and using the constraints gives

^VL@h#,L̂VR@h#&1h–z@h#5l@h# ~3.32!

and thus

2^VL@h#,L̂VR@h#&5h–z@h#2l@h#

5
1

T F K hT , dWdh @hT#L 2W@hT#G1o~1!

5
1

T
G@zT#1o~1!. ~3.33!

The first quantity is independent ofT, so that we see, taking
the limit T→1`, that

2^VL@h#,L̂VR@h#&5V@z#, ~3.34!

as was claimed.h
We have given only a formal proof of the theorem with-

out a careful statement of the conditions, which would cer-
tainly involve spectral properties of the Liouville operator
L̂, etc. The assumption of a spectral gap may be stronger
than required. The above variational characterization of the
effective potential is, in fact, equivalent to a spectral charac-
terization of the potential that has been rigorously estab-
lished in the Donsker-Varadhan theory@35,34,32#. In that
case it is shown, under suitable conditions, that
V@z#5suph(z–h2l@h#), where l@h# is the ‘‘principal ei-

genvalue’’ of the operatorL̂h5L̂1h–Ẑ. The equivalence of
these two characterizations follows from the preceding for-
mal proof. The representation of the potentialV@z# as a Leg-
endre transform ofl@h# is entirely analogous to the repre-
sentation of the entropy in equilibrium lattice spin systems as
the Legendre transform of the free energy, where the latter is
determined as the leading eigenvalue of the transfer matrix.
For deterministic dynamics the existence of a spectral gap in
the so-called Perron-Frobenius operator has been established
only for a few special cases, such as the work of Pollicot and
Ruelle on Axiom A systems@44#. The eigenvaluel@h# in
that context is a particular case of the topological pressure
P(w); see@39# ~or @43# for an introduction!. For example, in
the work of Ruelle@42# on expanding mapsf of compact
spacesX, the effective potential would coincide withP(w)
for the choicew(x)52 lnuf8(x)u1h–z(x). Hereu f 8(x)u is the
Jacobian determinant of the map and its logarithm lnuf8(x)u is
the Hamiltonian in the thermodynamic formalism for ex-
panding maps.

C. Rayleigh-Ritz approximation of the effective potential

We outline a simple variational method of Rayleigh-Ritz
type to approximate the effective potential and thereby the
ensemble means. TheAnsatzused previously forCR,CL

may need to be replaced by ‘‘augmentedAnsatz’’ C̄R,C̄L.
The reason is that the left ground state under the imposed
constraint, is no longer 1 identically and the constant com-
ponent must be allowed to vary. In other words, we must
augment the linearAnsatzEq. ~2.33! for the left ground state,
by setting

C̄L~a,aL!5(
i50

N

a i
Lc i

L~a!. ~3.35!

Here the test function

c0
L~x;a![1 ~3.36!

is included with an adjustable parametera0
L . Of course, with

the orthogonal expansionAnsatzEqs. ~2.35! and ~2.36!, the
constant term~zero-degree polynomial! is already included.
However, if it was not originally, it should now be added,
and an additional free parametera0 should be added to the
PDFAnsatz P5CR(a) as well. The most natural way to do
so is to simply replace the normalized densityCR>0 by

C̄R~x;ā!5a0C
R~x;a!, ~3.37!

wherea0 denotes an arbitrary normalization factor

E dxC̄R~x;ā!5a0 . ~3.38!

BecauseC̄LÞ1 under the constraint, unit normalization of
C̄R is no longer required, but instead the overlap condition
^C̄L,C̄R&51 must be maintained. Notice that we use the
notations ā,āL simply to indicate the parameter vectors
a,aL along with the additional zero componentsa0 ,a0

L . We
shall refer to theAnsatzEqs.~3.37! and~3.35! as thenatural
augmentation. While others can be contrived, this is the sim-
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plest extendedAnsatzand likely to be the most generally
useful. ~Despite this, some of our arguments below do not
apply to the natural augmentation. We will point out where
this occurs later in the discussion. This is really a technical
issue, since all of theresultsdiscussed hereinafter still hold
for the natural augmentation and it is only the proofs that
need to be changed somewhat. Rather than complicate the
discussion, we have decided to present proofs under the sim-
plest assumptions. These are satisfied, for example, by the
orthogonal expansionAnsatz. The natural augmentation is
discussed in detail elsewhere@45#.! Note that it is not neces-
sary to have a closed-form expression forCR, but it is
enough only to be able to calculate averages such as

m̄i~ā!5^c i
L~ā!& ā ~3.39!

and

V̄i~ā,h!5^L̂h
†c i

L~ā!& ā , ~3.40!

with i50,1, . . . ,N. In the most practical PDF closures, the
AnsatzCR(x;a) will be given, not explicitly, but instead by
averages with respect to ‘‘surrogate’’ random variablesXa

whose distributions are parametrized bya. From the joint
Ansatzfor C̄H, H5L,R, an approximation to the effective
potential is then obtained:

V* ~z!52^C̄*
L ,L̂C̄

*
R&, ~3.41!

where C̄
*
L 5C̄L

„ā* (h),ā*
L (h)… and C̄

*
R5C̄R

„ā* (h)… and
the parametersā

*
L (h),ā* (h), andh5h* (z) are to be deter-

mined as follows.
Incorporating as before the constraints by suitable

Lagrange multipliersl andh, the extremum point within the
Ansatz is obtained by varying the function

F~ā,āL![2^C̄L~ā,āL!,L̂hC̄
R~ā!&1l^C̄L~ā,āL!,C̄R~ā!&

~3.42!

of the parametersā,āL. First, by variation of theā param-
eters, one obtains the equation

A~ā,h!–āL5lB~ā!–āL, ~3.43!

with the matricesA(ā,h) andB(ā) defined by

Ai j ~ā,h!5
]

]ā i V̄ j~ā,h! ~3.44!

and

Bi j ~ā!5
]

]ā i m̄j~ā! ~3.45!

for i , j50,1, . . . ,N. Equation~3.43! has the form of agen-
eralized eigenvalue problem@24,46#. The parameter vector
āL(ā,h) is to be determined as the generalized eigenvector
associated to the leading eigenvalue.

However, the proper definition of this last quantity re-
quires some discussion. In the original infinite-dimensional
setting, the ‘‘leading’’ eigenvalue was defined to be that with
largest real part and forh small enough it coincides with the
zero branch passing through 0 forh50. On the other hand,

within an approximation such as that we consider here, these
two quantities need no longer coincide, although both exist.
An eigenvalue branchl(ā,h) such thatl(ā,0)50 exists
always with the associated eigenvectorā i

L5d i0 at h50.
Likewise, an eigenvalue with a real part, denotedL(ā,h), of
largest value will certainly exist. Because the two quantities
l(ā,h) and L(ā,h) are possibly distinct, either may be
plausibly used as the basis of an approximate calculation.
However, there are compelling reasons to prefer the use of
l(ā,h). Most importantly, it is only due tol(ā,0)50 that
ā* (0)5ā* coincides with one of the fixed points of the
h50 vector fieldV̄(ā) ~see below!. Also, as a practical mat-
ter, it will generally be easier to computel(ā,h) than
L(ā,h), whose calculation requires a determination of the
entire spectrum ofA(ā,h). Actually, all of these consider-
ations are rather academic. IfL(ā,h).l(ā,h)50 at h50,
then the stability matrix (]V̄/]ā)(ā)5@A(ā,0)#Á has an ei-
genvalue with positive real part. If this were to occur at the
starting pointā* , that point would be linearly unstable un-
der the dynamical flow of the vector fieldV̄(ā). That alone
would be enough to disqualify the pointā* from physical
interest. On the other hand, ifL(ā,h)5l(ā,h) at h50,
then, except for degenerate cases, this will also be true in a
small interval ofh about0 and no distinction need be made.
It will be explained below that the approximate potential
V* (z) calculated froml(ā,h) necessarily has the approxi-
mate mean

z̄*[E dxz~x!V
*
R~x! ~3.46!

as a critical point, withV* ( z̄* )50, but thatV* (z) need no
longer be convex atz̄* .

Returning, then, to the specification of the approximation
scheme, we next determineā* (h) as the value ofā satisfy-
ing the variational equation under the parametersāL:

V̄i~ā,h!5l~ā,h!m̄i~ā!, ~3.47!

i50,1, . . . ,N. This may be thought of as a type of ‘‘nonlin-
ear eigenvalue condition’’ andā* (h) as the associated ei-
genvector. Sincel(ā,0)50, it is a consequence of this defi-
nition that

ā* ~0!5ā* , ~3.48!

with ā* a fixed point of the dynamical vectorV̄(ā) defined
in Eq. ~2.74!. As long as the stability matrix (]V̄/]ā)(ā* ) is
nonsingular, the implicit function theorem guarantees that
Eq. ~3.47! has a solution for at least some small interval of
h about0. ~This is the property that is not satisfied by the
‘‘natural augmentation.’’ In fact, it is not hard to show that
with that choice

]V̄

]ā
~ ā* !5S 0 0

0
]V

]a
~a* !D . ~3.49!

Clearly, this matrix is singular. However, as we have already
noted, it is only the present proofs that fail and the results
themselves, proved here assuming nonsingularity, still hold
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for the natural augmentation@45#.! For practical computa-
tion, a Newton-Raphson or other root-finding algorithm may
be employed~see@47#, Chap. 9!, starting withā* at h50
and tracking a sequence of rootsā* (hk) iteratively forhk of
increasing magnitude. If the startingAnsatzC̄R,C̄L has more
than one acceptable fixed point, then any of them may be
used as a basis for the calculation. Next,ā*

L(h) is defined as
āL(ā* (h),h) with its normalization fixed by the constraint
^C̄*

L,C̄R

* &51. This allows one to define the function

z* ~h![^C̄L
„ā*

L~h!,ā* ~h!…,ẐC̄R
„ā* ~h!…& ~3.50!

and to determineh thereby as the valueh* (z) of its inverse
function at z. It should be remarked that bothā* (h) and
ā
*
L (h) are real vectors, at least for small enoughh, and

thereforez* @h# is a real vector too. The eigenvaluel(ā,h)
will be real for h sufficiently near0 and, in that case, the
associated generalized eigenvectorāL(ā,h) for the real ma-
tricesA(ā,h),B(ā) will also be real. We observe forh50
that z* @0#5 z̄* .

These prescriptions complete our recipe for the Rayleigh-
Ritz approximation to the effective potentialV(z). We now
establish an important representation forV* (z). Let us de-
fine

l* ~h![l„ā* ~h!,h… ~3.51!

in terms of the quantities introduced above. We now prove
the following

Proposition 1. The approximate effective potential
V* (z) is a formal Legendre transform ofl* (h) that is,

]l*
]h

~h!5z* ~h! ~3.52!

and

V* ~z!5z* ~h!–h2l* ~h! ~3.53!

for h5h* (z).
Proof. Setting

C̄
*
L ~x;h!5(

i50

N

ā
* i
L ~h!c i

L
„ā* ~h!… ~3.54!

and

C̄
*
R~x;h!5C̄„x;ā* ~h!…, ~3.55!

we observe the overlap condition̂C̄
*
L (h),C̄

*
R(h)&51 be-

comes simply

(
i50

N

ā
* i
L ~h!m̄i„ā* ~h!…51. ~3.56!

We next show that

^C̄*
L ~h!,L̂hC̄*

R~h!&5l* ~h!. ~3.57!

In fact,

^C̄*
L ~h!,L̂hC̄*

R~h!&5(
i50

N

ā
* i
L ~h!V̄i„ā* ~h!,h…

5l* ~h!(
i50

N

ā
* i
L ~h!m̄i„ā* ~h!…

5l* ~h!, ~3.58!

where the first line follows using the linearAnsatz, Eq.~3.54!
above, the second line follows from the nonlinear eigenvalue
condition Eq.~3.47!, and the last line follows from the over-
lap condition Eq.~3.56!. Now it is easy to see that

V* ~z!52^C̄*
L ~h!,L̂C̄

*
R~h!&5^C̄*

L ~h!,ẐC̄
*
R~h!&–h

2^C̄*
L ~h!,L̂hC̄*

R~h!&5z* ~h!–h2l* ~h!,

~3.59!

which is Eq.~3.53!.
The verification of Eq.~3.52! is a straightforward but

somewhat tedious calculation. Using once more the basic
expression Eq.~3.57! for l* (h), one finds by differentiation
that

]l*
]h

~h!5z* ~h!1K ]C̄
*
L

]h
~h!,L̂hC̄*

R~h!L
1K C̄

*
L ~h!,L̂h

]C̄
*
R

]h
~h!L . ~3.60!

Furthermore, calculation yields for the second term

K ]C̄
*
L

]h
~h!,L̂hC̄*

R~h!L
5(

i50

N S ]

]h
ā
* i
L ~h! D l* ~h!m̄i„ā* ~h!…1 (

i , j50

N

ā
* i
L ~h!

3K L̂h† ]c i
L

]ā j„ā* ~h!…L
ā
*

~h!

]ā* j
]h

~h!, ~3.61!

where the nonlinear eigenvalue condition Eq.~3.47! was
used in the first sum on the right-hand side. Likewise, for the
third term in Eq.~3.60!

K C̄
*
L ~h!,L̂h

]C̄
*
R

]h
~h!L 5(

i50

N

ā
* i
L ~h!l* ~h!S ]

]h
m̄i„ā* ~h!…D

2 (
i , j50

N

ā
* i
L ~h!

3K L̂h† ]c i
L

]ā j„ā* ~h!…L
ā
*

~h!

3
]ā* j
]h

~h!, ~3.62!
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where the generalized eigenvalue equation~3.43! was used
in the first sum on the right-hand side. Adding the two con-
tributions, the last terms of each cancel and the result is

K ]C̄
*
L

]h
~h!,L̂hC̄*

R~h!L 1K C̄
*
L ~h!,L̂h

]C̄
*
R

]h
~h!L

5(
i50

N F S ]

]h
ā
* i
L ~h!D l* ~h!m̄i„ā* ~h!…1ā

* i
L ~h!l* ~h!

3S ]

]h
m̄i„ā* „h…D G

5l* ~h!
]

]h F(
i50

N

ā
* i
L ~h!m̄i„ā* ~h!…G

50. ~3.63!

The constant overlap Eq.~3.56! was invoked in the last line.
Thus (]l* /]h)(h)5z* (h). It may be worth remarking that
this result is a nonlinear generalization of the Hellmann-
Feynman theorem used in quantum-mechanical perturbation
theory.h

It is a consequence of this proposition that

V* ~ z̄* !50,
]V*
]z

~ z̄* !50. ~3.64!

Indeed, sincez* (0)5 z̄* andl* (0)50, the first follows di-
rectly from Eq. ~3.53!. For the second, we use the simple
result of Eq.~3.53! that

]V*
]z

~z!5h* ~z! ~3.65!

andh* ( z̄* )50. Hence we conclude that the properties Eq.
~3.64!, which hold for theexacteffective potential, are auto-
matically guaranteed to hold in the Rayleigh-Ritz approxi-
mation. However, the important property ofconvexityof
V* (z) is not guaranteed. All that can be inferred from Eq.
~3.53! is thatV* (z) is convex inz if and only if l* (h) is
convex inh.

Let us first note, however a useful simplification. As dis-
cussed in Sec. II B, it is very convenient here also to replace
the parametersā by the momentsm̄. Assuming that the ma-
trix B(ā)5]m̄/]ā defined in Eq.~3.45! is nonsingular, then
the relationm̄5m̄(ā) may be inverted, at least locally, to
give ā(m̄) as a function ofm̄. Therefore, them̄ may be used
as parameters instead of theā, writing as well
cL(m̄)5cL

„a(m̄)… and C̄R(m̄)5C̄R
„ā(m̄)… without any

possibility of confusion. In this case, the equation obtained
under variation of them̄ parameters reduces to an ordinary
eigenvalue problem

A~m̄,h!–āL5lāL, ~3.66!

with the matrixA(m̄,h) defined similarly as before:

Ai j ~m̄,h![
]

]m̄i V̄j~m̄,h! ~3.67!

and

V̄i~m̄,h![^L̂h
†c i

L~m̄!&m̄ , ~3.68!

Once again,l(m̄,h) may be taken as the leading eigenvalue
and āL(m̄,h) its associated eigenvector. Likewise, an equa-
tion may be obtained form̄* (h) by varying āL, which is
now simply

V̄~m̄,h!5l~m̄,h!m̄. ~3.69!

With these additional simplifications, the procedure to calcu-
lateV* (z) is otherwise the same as before.

In calculating the approximationV* (z) by the Rayleigh-
Ritz method, one obtains as well approximations toVH,
H5L,R. Since it requires more work to impose the con-
straints, it may seem that nothing has been gained and even
something has been lost. However, a moderately goodAn-
satzCH(a,aH) may yield rather poor results forVR and yet
quite good results forz̄. It is useful to calculate the effective
potential from theAnsatzas a diagnostic since the qualitative
features should be reproduced such thatV* (z)>0 and that
z̄* is a minimum point ofV* with V* ( z̄* )50. If one’s only
interest is in the mean values, then these are more realistic
criteria of acceptability of the approximation than to insist,
e.g., thatC*

R>0 everywhere. Negative density in an insig-
nificant region ofx space might have very little effect on the
approximate averagez̄* , which could be quite close to the
true averagez̄. On the other hand, a failure of convexity of
V* (z) would doubtless indicate serious errors inz̄* as an
approximation toz̄. Such a ‘‘prediction’’ would need to be
discarded as spurious. The condition of convexity of the ef-
fective potential is not contained in any property of the clo-
sure dynamics and it incorporates important additional infor-
mation from the exact Liouville dynamics.

D. Variational characterization of the effective action

We now show that the time-dependent effective action
can also be obtained by a constrained variation of the non-
equilibrium action functionalG@CR,CL#. The proof of this
theorem is almost the same as the proof of a corresponding
result in quantum field theory due to Jackiw and Kerman
@19#. Just as the Symanzik theorem is a constrained version
of the familiar quantum variational principle for energy ei-
genvalues and eigenvectors, the Jackiw-Kerman theorem can
be seen as a constrained version of Dirac’s@4# variational
formulation of the Schro¨dinger equation~a quantum analog
of Hamilton’s principle!. In addition to providing a basis for
time-dependent Rayleigh-Ritz calculations, the Jackiw-
Kerman-type theorem establishes the existence of a Lagrang-
ian functional for the effective action.

Theorem 2. The effective actionG@z# for the initial-value
problem is the value at the extremum point of the functional

G@CR,CL#5E
0

`

dt^CL~ t !,~] t2L̂ !CR~ t !& ~3.70!

when that is independently varied over all pairs of time-
dependent state vectors subject to the constraints for each
time t,
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^CL~ t !,CR~ t !&51 ~3.71!

and

^CL~ t !,ẐCR~ t !&5z~ t !, ~3.72!

and also to the boundary conditions

uCR~0!&5P0 , uCL~`!&[1. ~3.73!

Proof. As in the static case, we use the representation

W@h#5 lnK VL,TexpS E
0

`

dtL̂h~ t ! DVRL , ~3.74!

where L̂h(t)5L̂1h(t)–Ẑ as before but nowVR5P0 ,
VL[1. In other words,

W@h#5 ln^VL~ t !,VR~ t !&, ~3.75!

where

uVR~ t !&5TexpS E
0

t

dsL̂h~s! D uVR& ~3.76!

and, if T̄ denotes ‘‘antitime ordering,’’

uVL~ t !&5T̄expS E
t

`

dsL̂h
†~s! D uVL&. ~3.77!

These trajectories are the solutions, respectively, of the
initial-value problem

] tuVR~ t !&5L̂h~ t !uVR~ t !&, VR~0!5P0 ~3.78!

and of the final-value problem

] tuVL~ t !&52L̂h
†~ t !uVL~ t !&, VL~`![1. ~3.79!

On the other hand, the variational problem can be solved
by the use of Lagrange multipliers for the time-dependent
constraints

dS G@CR,CL#2E
0

`

dt@h~ t !–^CL~ t !,ẐCR~ t !&2l~ t !

3^CL~ t !,CR~ t !&# D 50, ~3.80!

yielding

@] t2L̂h~ t !#uCR~ t !&52l~ t !uCR~ t !& ~3.81!

and

@] t1L̂h
†~ t !#uCL~ t !&5l* ~ t !uCL~ t !&. ~3.82!

In that case we see that

uVR~ t !&5expF E
0

t

dsl~s!G uCR~ t !& ~3.83!

and

uVL~ t !&5expF E
t

`

dsl* ~s!G uCL~ t !&. ~3.84!

Substituting these into Eq.~3.75! and using the overlap con-
straint, we obtain the expression for the cumulant-generating
function,

W@h#5E
0

`

dtl~ t !

5E dt^CL~ t !,@2] t1L̂1h~ t !–Ẑ#CR~ t !&.

~3.85!

The last equation was obtained by applyingCL(t) on the
left-hand side to Eq. ~3.81!. Note that, indeed,
dW@h#/dh(t)5z(t) by a simple calculation

dW@h#

dh~ t !
5z~ t !1E

0

`

dsFl~s!K dCL~s!

dh~ t !
,CR~s!L 1l~s!

3K CL~s!,
dCR~s!

dh~ t ! L G
5z~ t !1E

0

`

dsl~s!
d

dh~ t !
^CL~s!,CR~s!&

5z~ t !. ~3.86!

To obtain the first line we used Eqs.~3.81! and~3.82! and to
obtain the last line we used again the overlap condition. We
therefore get directly from Eq.~3.85! that

G@z#[E
0

`

dth~ t !–z~ t !2W@h#

5E
0

`

dt^CL~ t !,~] t2L̂ !CR~ t !&, ~3.87!

as was claimed.h
As remarked above, the quantity

L~ t ![^CL~ t !,~] t2L̂ !CR~ t !& ~3.88!

can be taken as a Lagrangian functional in terms of which
G5*2`

1`dtL(t), i.e., a time density for the effective action.
On the basis of this theorem a practical Rayleigh-Ritz

scheme may be devised. If the variation described in the
theorem is carried out within a finite-parameterAnsatzsuch
as Eq.~2.50! for CH, H5L,R, then the problem reduces to
determining stationary points of a parametric action

G@ā;h#[E
0

`

dt$p i„ā~ t !…aG i~ t !2H„ā~ t !…2h~ t !–

3@Z„ā~ t !…2z~ t !#1l~ t !@N„ā~ t !…21#%,

~3.89!

which incorporates the constraints by Lagrange multipliers
h(t),l(t). We have defined
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Zm~ā!5^C̄L~ā!,ẐmC̄R~ā!& ~3.90!

and

N~ā!5^C̄L~ā!,C̄R~ā!&. ~3.91!

As in the static case, theAnsatzEqs.~2.50! may need to be
‘‘augmented’’ to allow for the fact thatCL(t)Þ1 when
h(t)Þ0. We will consider here briefly just the simplest situ-
ation, whereC̄H5C̄H(āH), H5L,R, with C̄L given by Eq.
~3.35! and theāR parameters taken just to be the correspond-
ing momentsm̄, as in Eqs.~3.66!–~3.69!. In this case, the
parametric action takes the form

G@m̄,āL;h#[E
0

`

dt@āL~ t !–mG ~ t !2āL~ t !–V̄„m̄~ t !,h~ t !…

1l~ t !„āL~ t !–m̄~ t !21…#, ~3.92!

neglecting some terms independent of the parameters being
varied. The corresponding Euler-Lagrange equations are

mG ~ t !5V̄„m̄~ t !,h~ t !…2l~ t !m̄~ t !, ~3.93!

aG L~ t !1A„m̄~ t !,h~ t !…āL~ t !5l~ t !āL~ t !, ~3.94!

āL~ t !–m̄~ t !51, ~3.95!

with the boundary conditions at initial and final times

m̄~0!5m̄0 , āL~1`!5~1,0!, l~1`!50.
~3.96!

These equations should be compared with their static coun-
terparts Eqs.~3.66! and~3.69!. For a specifiedh(t), this two-
point boundary value problemmay be solved numerically by
standard methods; see@47#, Chap. 17. For smallh(t), the
best numerical scheme is probably the relaxation method be-
cause an exact solution is known for the system ath(t)[0,
corresponding to a solutionm̄(t) of the moment-closure dy-
namics with specified initial datam̄(0)5m̄0 and to
āL(t)[(1,0), l(t)[0. This known solution forh0(t)[0
may then be input as an initial guess into a relaxation algo-
rithm to find the solution with some smallh1(t), and, itera-
tively, a sequence of solutions withhk(t) of increasing mag-
nitude constructed. In this way, the fluctuations around the
predicted dynamical trajectorym̄(t) of the moment closure
may be explored in the Rayleigh-Ritz method by varying
h(t). The method then yields an approximate effective action

G* @z#5E
0

`

dt@ā
*
L ~ t !–mG * ~ t !2ā

*
L ~ t !–V̄„m̄* ~ t !…#,

~3.97!

in which m̄* (t),ā*
L (t),l* (t) are solutions of the initial-final

value problem Eqs.~3.94! and ~3.95!, with h(t) selected so
that

z* m~ t ![ā
*
L ~ t !–Z̄* m~ t ! ~3.98!

equals the specified zm(t). We have defined
Z̄* m(m̄)5^Ẑmc̄L&m̄ .

Equivalently, the approximate action may be written as

G* @z#5E
0

`

dt@z* ~ t !–h~ t !2l* ~ t !#. ~3.99!

This can be compared with the approximate effective poten-
tial in Proposition 1. If we define the approximate generating
functional W* @h#5*0

`dtl* (t), then it also follows as in
Proposition 1 that

dW* @h#

dhm~ t !
5z* m~ t !. ~3.100!

Thus the approximate effective action from the Rayleigh-
Ritz method, Eq.~3.97! or ~3.99!, retains the Legendre trans-
form structure of the true effective action. It is not hard to
derive from this fact that

G* @ z̄* #50,
dG*
dz~ t !

@ z̄* #50, ~3.101!

where z̄* (t)5^z&m̄(t) is the expected value ofz in the PDF
Ansatzcalculated along the trajectorym̄(t) of the moment
closure. Hence the predicted mean historyz̄* (t) is guaran-
teed to be a stationary point ofG* @z#, but not necessarily a
minimum point.

Recently, an alternative nonperturbative approximation to
the nonequilibrium effective action has been developed by
Crisanti and Marconi@48# via a dynamical Hartree approxi-
mation. While the two approximation schemes are similar in
spirit, there are essential differences between them. We
present here no detailed comparison of the two techniques.
However, we believe it is a virtue of the present method that
it allows an approximation of the effective action and effec-
tive potential withinanyPDFAnsatzthat may be proposed.
Furthermore, it makes direct connection with the moment-
closure equations that have been traditionally used in non-
equilibrium statistical dynamics. We believe that the combi-
nation of flexibility to incorporate intuitive guesses and
transparency of the physical interpretation should give the
present method far-reaching applications.
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APPENDIX: GENERAL VARIATIONAL EQUATIONS

The most general trial Ansatz has the form
CH5CH(a,aH), H5L,R, with NL5N1NR. In this case,
the parametric Hamiltonian is calculated as

H~a,aR,aL!5^CL~a,aL!,L̂CR~a,aR!&. ~A1!
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Correspondingly, the fixed point conditions are

]H
]a i

L ~a,aR,aL!5^c i
L~a,aL!,L̂CR~a,aR!&

50, ~A2!

]H
]a i

R ~a,aR,aL!5^CL~a,aL!,L̂c i
R~a,aR!&

50, ~A3!

and

]H
]a i

~a,aR,aL!5 K ]CL

]a i
~a,aL!,L̂CR~a,aR!L

1 K CL~a,aL!,L̂
]CR

]a i
~a,aR!L 50,

~A4!

with c i
H5(]CH/]a i

H), H5R,L. Within the sameAnsatz,
the parametric evolution equations have the form

$a i ,a j%ȧ j1$a i ,a j
R%ȧ j

R1$a i ,a j
L%ȧ j

L5
]H
]a i

~a,aR,aL!,

~A5!

$a i
R ,a j%ȧ j1$a i

R ,a j
L%ȧ j

L5
]H
]a i

R ~a,aR,aL!, ~A6!

and

$a i
L ,a j%ȧ j1$a i

L ,a j
R%ȧ j

R5
]H
]a i

L ~a,aR,aL!. ~A7!

The most generalAnsatzof any obvious utility is that given
in Eq. ~2.33!:

CL511(
i51

N

a i
Lc i

L~a!, CR5CR~a!. ~A8!

This may be thought to correspond to the previousAnsatz
with NR50, NL5N, and a linear dependence ofCL on the
aL. For this case, the parametric Hamiltonian is

H~a,aL!5(
i51

N

a i
LVi~a!, ~A9!

with Vi(a)5^L̂†c i
L(a)&a the dynamical vector field in the

parameter space, as in Eq.~2.78!. The fixed point conditions
are simply

Vi~a!50 ~A10!

and

a j
L ]Vj

]a i
~a!50 ~A11!

for i51, . . . ,N. When the stability matrix at a fixed point
a* of Eq. ~A10! is nonsingular, det@(]V/]a)(a* )#Þ0, then
the only solution of Eq.~A11! is aL50. The parametric evo-
lution equations within the sameAnsatzare

$a i ,a j%ȧ j1$a i
L ,a j%ȧ j5Vi~a! ~A12!

and

$a i ,a j
L%ȧ j

L5a j
L ]Vj

]a i
~a!, ~A13!

where the Lagrange brackets are

$a i ,a j%5 (
k51

N

ak
LF K ]ck

L

]a i
~a!,c j

R~a!L 2K ]ck
L

]a j
~a!,c i

R~a!L G
~A14!

and

$a i
L ,a j%5^c i

L~a!,c j
R~a!&, ~A15!

with now c i
R[]CR/]a i . Equation ~A13! clearly has the

constant solutionaL(t)[0. Equation ~A12! then has the
same form as Eq.~2.77!. It is also identical to Eq.~2.11! in
the work of Bayly@28#, but here derived by the variational
method.
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