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Action principle in nonequilibrium statistical dynamics
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We introduce a variational method for approximating distribution functions of dynamics with a “Liouville
operator” L, in terms of anonequilibrium action functionafor two independentleft and righ} trial states.
The method is valid for deterministic or stochastic Markov dynamics and for stationary or time-dependent
distributions. A practical Rayleigh-Ritz procedure is advanced, whose inputs are a finitely paramfetsaéed
for the trial states, leading to a “parametric action” for their evolution. The Euler-Lagrange equations of the
action principle are Hamiltonian in foritgenerally noncanonicalThis permits a simple identification of fixed
points as critical points of the parametric Hamiltonian. We also establish a variational principle for low-order
statistics, such as mean values and correlation functions, by meansle&sheffective actioriThe latter is a
functional of the given variable, which is positive and convex as a consequencéldgrHealizability in-
equalities. Its value measures the “cost” for a fluctuation from the average to occur and in a weak-noise limit
it reduces to the Onsager-Machlup action. In general, the effective action is shown to arise from the nonequi-
librium action functional by a constrained variation. This result provides a Rayleigh-Ritz scheme for calculat-
ing just the desired low-order statistics, with internal consistency checks less demanding than for the full
distribution.[S1063-651X96)02710-9

PACS numbgs): 02.50-r, 05.40+j, 05.45+b

[. INTRODUCTION tistical dynamics as a formal quantum field theory in the
work of Martin, Siggia, and Rogé]. It was noted iff6] that
The Rayleigh-Ritz variational method is a well- variational principles could be formulated, without any fur-
established technique in quantum mecharies., sed1]). ther details. However, a mathematical obstacle exists to ap-
In this method one solves approximately the stationarylying by analogy the quantum principles because the formal
Schralinger equation by making a physically motivated trial «yamiltonian” L is generally non-Hermitian for the dissipa-
Ansatzfor the ground-state wave function and then varyingyye gynamical systems of interest. Variational methods of
the energy-expectation functional with respect to its params, o standard form as in quantum mechanics have been em-

eters. A similar method is available for solving the time- . .
dependent Schdinger equation, based upon the Dirac- ployed in special cases whete can be transformed to a
' Hermitian form [7—9] or else based upon the Hermitian

Frenkel dynamic variational principl@—5]. These methods A
are among the very few tools in the arsenal of theoreticapquared operatdr'L [7,10]. These methods seem to be ei-
physics able to assault systematically strong-coupling probther too restrictive or too cumbersome to be as useful as the
lems of quantum dynamics. They are especially useful irforresponding quantum principles. Recently, we have ob-
guantum field theory and many-body theory, where alternaserved in the turbulence context that a variational method
tive numerical approaches are expensive or unfeasible. Imay be developed for nonequilibrium dynamics, which pre-
some cases, such as the BCS theory of superconductivity, tleerves the principal advantages of the quantum methbld
variational principle has been the stepping stone to an exadthe key idea in the recent formulation is to vary jointly over
solution of the problem. independent left and right trial statesAlthough this

In our opinion, nonequilibrium statistical mechanics hasRayleigh-Ritz method seems to be most natural for a non-
been lacking a variational principle of the same flexibility Hermitian operator, it does not seem to have been previously
and scope as in quantum theory, capable of determining thgsed for nonequilibrium dynamics. It is our purpose here to
probability density functior(PDF) for both the steady-state develop this method in a general context and in some formal
and the time-dependent solution to the initial-value problemdetail.
This is particularly true for problems such as high Reynolds One advantage of the variational method in our formula-
number turbulence and large scale dynamics of multiphasgon is that it yields, by a procedure obnstrained variation
fluids, where there is no small parameter in which to make & characterization of theffective actiorfor any selected sta-
perturbation expansion or asymptotic development andistic of interest, such as a mean value or a two-point corre-
strong fluctuations dominate the phenomena on a wide rangetion. The effective action is a non-negative, convex func-
of length scales. An obvious analogy exists between Schraional whose minimum is achieved by the true ensemble-
dinger’'s equation for the wave function and th®uville  average value. In quantum field theory the concept has it

equationfor the PDF in the nonequilibrium problems: roots in the early work of Heisenberg and Eu[é2] and
R Schwinger[13] in QED. In nonequilibrium statistical me-
P=LP. (1.9 chanics, the first such action principle seems to have been

Onsager’s “principle of least dissipation[’14], which ap-
This analogy has been used before to express classical stalies to systems subject to thermal or molecular noise, gov-
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erned by a fluctuation-dissipation relation. A formulation of |_ is the (forward Markov generator. Concrete examples of
the least-dissipation principle by an action functional on hispractical interest are the nonequilibrium master equations

tories was developed by Onsager and MacHif]. The  [23] and, as a particular case, the Fokker-Planck equations
effective action we consider coincides in a weak-noise limiff7], with

with the Onsager-Machlup action, as discussed some time
ago by Grahani16]. For vanishing noise, a path-integral
formula for the effective action can be evaluated by steepest
descent, yielding the *“classical” action of Onsager-
Machlup. However, in the strong-noise case, efficient calcuin whichK is the drift vector and is the diffusion tensor. A
lational tools remain to be developed. We show here that thdegenerate case of the latter of special interest occurs for
Rayleigh-Ritz method provides one such computationakero noise P=0), which is
scheme. The basis of this method is a generalization of Sy-
manzik’'s theorem in Euclidean field theof$7] (see also
[18]), which characterizes the static effective action, or, “ef-
fective potential,” by a constrained variation of the quantum o L .
energy-expectation functional. This theorem has been exhe “Liouville operator” of the deterministic dynamical sys-
tended by us to Martin-Siggia-Rose field theory with a non-temx=K(x). _ o
Hermitian Hamiltonian operatof11]. Here we shall, for We Qevelop here a simple variational method to calculate
completeness, briefly recapitulate that result and then ex@Pproximately the solutions of E¢L.1) for P, both for the
pound in detail the corresponding Rayleigh-Ritz method. Westationary PDRPs and for time-dependent solutios with
also establish a Symanzik-type theorem for the time.prescribed initial data:)o. Our methods are analOgOUS to
dependent effective action, extending the earlier result oRayleigh-Ritz procedures traditional in quantum mechanics,
Jackiw and Kerman in quantum theof§9] to the initial-  but with a modification due to the fact that the operdtas
value problem in nonequilibrium statistical dynamics. non-self-adjoint:

The methods we develop here are quite general and apply, ~ A
indeed, to the solution of any large scale stochastic system, LT#L. 2.3
not only those in nonequilibrium statistical physics, but also A N ~
to population dynamics in biology, to stochastic market mod-Although the spectra df andL" are the samébecause. is
els in mathematical finance, etc. The advantages of a vari& real operatoL* =L), their eigenstates are distinct. Equiva-
tional scheme are well known. For example, we quote thdently, the left and right eigenstates bfare distinct{1,24].

2

~ 0 1 9

A 1%
L=—(7—Xi[Ki(X)~]. (2.2)

following: This is particularly true for the “ground states”
The great virtue of the variational treatment, “Ritz’s . -
method,” is that it permits efficient use in the process of LIOR)=0 LTQbY=o0. (2.9

calculation, of any experimental or intuitive insight which _
one may possess concerning the problem which is to pBecause of thezfundamental asymmetry of the p-roblem, Hil-
solved by calculation. It is important to realize that this is Pert space ot.* methods are not as useful as in quantum
not possible, or possible to a much smaller extent, if ondheory. Instead, the standard mathematical formulatéere
performs the calculation by using the original form of the [25]) is to takeL as an operator oh*, considered as a space
equations of motin. .. . Ritz’s method, on the other of “normalizable states,” and.” as an operator oh®, con-
hand, is definitely a method of successive approximationssidered as a space of “bounded observabld3He math-
and one which converges better in the later stages of thematical notation is, unfortunately, the opposite of that gen-
approximation. Any information therefore which one may erally adopted in the physics literature: what we have called
possess—no matter whether it comes from experiments. LT are in mathematics usually denotedlas L (forward
from intuition, or from general experience obtained inand backward Markov operators, respectiyghAlthough
previous works on similar problems— can be made usefuthe inequality of the two ground states is a complication,
by using it in formulating the point of departure, the “ze- there are special features that largely compensate for this.
roeth[sic] approximation”[20]. The “right ground state”QR is the main unknown of the

The present paper elaborates the theoretical foundation @froblem, the stationary PDFg, and it can always be taken
such a variational scheme for stochastic dynamical systemg be non-negative

In future work we shall apply the method to various concrete

systems of practical interest. In particular, the pajizt] QR(x)=0. (2.5
demonstrates the feasibility of the Rayleigh-Ritz method for .
numerical computation of the effective potential ajgp]  This is part of the statement of the Perron-Frobenius theo-

applies the action principle to the problem of moment clo-Tem, sincee'- is an operator with strictly positive kernel; see
sures in turbulence mode”ng_ [26], or Theorem 3.3.2 q127] On the other hand, the “left

ground state” is knowrexactly a priori

Il. THE VARIATIONAL METHOD FOR DISTRIBUTIONS Qt(x)=1. (2.6)

Our problem is to calculate the probability distribution This latter fact turns out to be of great utility in our method.
functions, denoted b#?, for nonequilibrium Markov dynam- We discuss first the stationary problem and thereafter con-
ics, governed by an equation of the form of Ef}.1), where  sider the time-dependent case.
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A. Stationary distributions H(a)5<q,L(a) Lq,R(a)> (2.14

Define a functionalH of left and right state vectors as ] ) o
which we call the(parametric) Hamiltonian We may now

H[qu,qu]Eme,[pr), (2.7 seek the extremal, or critical, points &f:

Then it is easy to see th&R Q' are uniquely characterized

oH
as the joint extremal point of the function& a_ai(a* )=0. 219

SH[VR ¥L=0 (TR ¥TH=(QR QY. (2.8  This condition may be written more explicitly as

In fact, (P (), LUR(a,)) + (¥ (@), Lyl (a,))=0
- - (2.19
SH{WR WL =(sPL LYR)+ (WL LsTRY=0 (2.9
for eachi=1,... N, where, in general, foH=L,R
if and only if
i i N
L|vRy=0, L'wh)=o. (2.10 i (@)= da; (@). 2.19

As stated above, we tak#ReL! (“states”) and ¥lelL” One may take the corresponding state vectors as the approxi-
(“observables”, with mations to the ground states:

AR =VRxa,), OL(=V'(xa,). (2.18
, = X X X). 2.1
Pl R dxWL(x)* WR(x) (2.1) ( (xa, ol G
In the special case E@2.13 with no common parameters,

The “inner product” notation is always used in this paper asthe variational equations become simply
the canonical sesquilinear associationWRe L and ¥t

eL” with the complex numbefWw", wR) defined in Eq. ozﬁ_7ﬁ:<\pL(a’L<),[¢iR(a5)> (2.19
(2.11). da;
This simple variational characterization of the ground
states can be made the basis of a Rayleigh-Ritz method &nd
approximation. To initiate this method, one must métai IH
Ansdze 0= 1 =(yi(a}) LYR(a])), (2:20
i

YR=VYR(@), V'=Vl(a) (2.12

with i=1,... N (=NR=N"). We may also write out the
for the ground state¢Since we knowQ" to be exactly equal general equatiof2.16) more explicitly as separate equations
to one, it may seem unnecessary to make\agatzfor it at  for the variations under each ef}, o*, anda. However, we
all. However, variation over the “observables” is required to have not found this version of the equations to be as useful,
characterize the “state,” or right ground std®&.) The vec- ~ so that we relegate it to the Appendix.
tor a=(ay, ...,ay) denotes a set oN real parameters In general, the functior{(«) may have more than one
(where possiblyN==). In certain cases, we wish to have critical point. Somea priori criteria for selection of the criti-
some parameters dependence only on one of the vectoesl points) of interest arise from thexactinformation for
" H=L,R and we denote the corresponding parameters ahe problem thatH[ QR Q]=0 and thatQ-=1. Hence,
aH:(aT, o ,aEH) for H=L,R respectively. We then use among the possible critical points, we should only accept
a to denote only the common parameters in both trial vecthose for which
tors. An interesting special case is when there are no such
common parametegrs,ﬁ.e., H(e,)~0 (2.2

YR=TR(aR), WL=Wl(a), (213 and

Live )
andN"=NR, i.e., with equal numbers of the left and right VG ~1. (2.22

parameters. Thé\nsdze provide an explicit, but arbitrary, The second condition generally implies the first. Hence we

reduction of the original variational problem in an infinite- 5,419 only accept those critical points for whi€lt, is

. . . . *
dimensional function space to an analogous problem iRyose to the constant 1. We refer to such critical points as
N-dimensional Euclidean space. A given assumed form Okgcceptable.” Because of the acceptability condition, we see
the trial Ansatzprovides, in essence, a “nonlinear projec- ihat the Ansdze need really only explore the region near

tion” of the original time-independent stationarity equations.\yL1 Thus we may, without loss of generality, assume that
This is the same general strategy proposed explicitly by L ' ’

X <1 and expand to linear order
Bayly under the term “parametric PDF closuref?8] (and i P

used implicitly by others befoje Here we simply explain NL
how this strategy may be implemented variationally. V(aat)=1+ > atyt(a) (2.23
For any particulaAnsatz we denote ' = T
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where, now, forH=L,R,y(a,a)=(0¥"/9a)(a,a'), N
rather than Eq(2.17. Correspondingly, ‘I’L=1+Zl aty-(a), YR=TRa). (233
=

H(aR, o, @)= ai (¢i(@), LY R(a, ")) (229 There may be some advantage in permitting the moments to

. L L e vary along with the trial state. Hence this more general ver-
(summation convention impligdTo guarante&l™e L™, we  gion is worked out in the Appendix.

should really take A simple example of suctAnsdze as discussed above
N may be devised based upotrial weight w=w(x), which is
. a normalized probability density, and an adapted setrof
\PL(“’“L):GXI{';l af‘zﬁ:‘(a)]. (2.29 thogonal polynomials g(x):

However, this leads to results equivalent to E223. J AXW(X) Pr(X) P (X) = Sppy - (2.39
It is useful to consider the special case E313 with no
common parameters, for which the variational equation%ee[29'3q_ A natural form of the trialAnsatzthen takes
(2.19 and(2.20 become simply NR=N' (=N) and
L/ L /R N-1
a-(yF LyRaR))=0 (2.26
e PR @) =w(x) X afpn(X) (2.39
and "
Lo and
(g ,L¥R(aP))=0 (2.27) -
Ly _ L
fori,j=1,... N. If the matrix in Eq.(2.26) is nonsingular H(x; )= n§=:O anPn(X).- (236
def(yr ,|:l,//JR( a))]#0, (2.28  This Ansatzis a simple case of the type of E(.13, with

no common parameters. Here the stationarity condition be-
then the first of the variational equations has asuitgqjue  comes simply

solution
LyaR=0, aklLy=0, (2.37)

a-=0. (229 ith
In that case, Eq2.27) is the only remaining equation and it (Ln)nn={Pn ,[(an,» (2.39
determines the critical value? . Thus the condition deter-

mining P.= QR in this approximation is the stationarity con- for 0=<n, n’<N. In other words, thaf and e} should be,

dition respectively, right and left eigenvectors of the matkiy
A with eigenvalue zero. It is easy to check that a left eigenvec-
(LTyH) r=0 (2.30  tor of Ly for the eigenvalue zero always exists and is given
* simply by
for the finite set of moment functiong;, i=1, . .. NL. In ain: Sno- (2.39

that case, the variational method does not differ from the
projection of the dynamics onto a finite set of moments. Iflt is possible to generalize the orthogonal polynondiakatz
one permits a more general dependenc® bfon the param- by choosing the trial weightv(a), depending upon some
etersa’ than the linearAnsaze Eq. (2.23, then the varia- additionalM parametersy;, i=1,... M. In that case, the
tional method does not generally coincide with the momentdapted orthogonal polynomials will depend also upen
projection. However, we see no advantage at this point td\fter initial variation overa®, a-, a second variation may be
allowing a nonlinear dependence ah. made to optimize the choice af.

It is possible to obtain the moment projection condition in  An advantage of the orthogonal polynomial scheme is that
a slightly more general form, i.e., so that the momepits it may converge in the limiN—c; for an example, sef1].
depend upon the same set of parameteiss the trial state Some sufficient conditions for convergence are discussed in
WR=¥R(a). Formally, we takeNR=0 and N=N'. We [11]. It is necessary for convergence that
may obtain for theN parametersy determining equations of fdx[Pg(x)/w(x)]<oo [29]. Unfortunately, the expansion
the form AnsatzEq. (2.35 for the state need not be positive at all

R values ofx. Insteadealizability can be guaranteed by mak-
(Y1 () LYR(@)=0 (2.31) ing anAnsatz

R__
or, equivalently, VR=w(a,a?), (2.40

Sl in which
(L' (@))a=0. (2.32

. . Ry _
This is accomplished by making the variatiodaisaze W(X; ") =0, J dw(xea)=1. (2.4
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This ensures realizability whenever such Ansatz along
with Eqg. (2.23), yields an acceptable critical point. The cri-
terion of realizability is especially important for a few pa-
rameterAnsatz incorporating certain physical insights and
ideas as a test of those beliefs. On the other hand, for the
case wherdN— oo, it may be preferable to impose the crite-
rion of convergenceThis might be done even at the price of _ ] ) S ]
loss of realizability if convergence for a statistic of particular This makes it obvious that the Hamiltonian is invariant along
interest is rapid enough. The dual criteria of realizability and@n €xtremal set of trajectories of the action E2j43.

convergence ought to be regarded as complementary in their N the same manner as for the stationary case, we may use
applicability. the previous variational principle as the basis of an approxi-

mation method for the time-dependent PDF. The basic idea
is similar to time-dependent variational principles of stan-

WR(x)= HIWR W],

s
SPH(x)

Ph(x)= H[WR WL, (2.49

- WR(x)

B. Time-dependent distributions

We first observe how the evolution equatidnl) may be
formulated variationally. Let us define

[[VR W= f:dt<\lf'-(t),(p7t— LwR(t), (2.42

as a functional of “trajectories¥P"(t), H=L,R. We refer
to this functional as th@onequilibrium actionlt is easy to
see formally that the stationarity condition

ST[WR¥L]=0 (2.43
is equivalent to

(3= D)[WR(1)=0, (d+LHW(1))=0, (2.44
the variation being performed with the constraint

(W (), WR(0))=(¥"(0), ¥(0)). (2.49

In other words, a pair of trajectories is an extremal point of
the action if and only if the “right trajectory” is a solution of

the evolution equatioril.1) and the “left trajectory” is a

dard use in quantum mechan|[&3], going back to the early
work of Dirac[4] and Frenke[5]. The procedure is initiated
by making trial Ansazefor the trajectories, in the form

(2.50

with H=L,R. In other words, the reduction to a finite num-
ber of degrees of freedom is made with the same functional
form as for the stationary case and all of the time dependence
is contained in the parametangt). This is the same idea as

in the general method of parametric PDF closure, except that
here we derive equations for the closure parameters varia-
tionally. Indeed, we may substitute the trial trajectories into
the action to obtain a reduced parametric action

PR =" (at)),

Mlal= [ dtim ()i Hla)], (25D
with

d
Wi(a)5<\I’L(a),£1PR(a)>. (2.52

solution of the adjoint equation, subject to the “end-pointThe Euler-Lagrange equations of the variational principle
constraint” Eq.(2.45. It is important to note a particular have the special form

exact solution of the adjoint equation

Ph(x,t)=1. (2.46
In that case, the end-point constraint becomes
f dx\I’R(x,oo)zf dx¥R(x,0), (2.47

which is automatically satisfied by any solution of the evo-
lution equation. In other wordal“(t)=1 together with any

. 0H
{ai,aj}ajZJ, (253
in which
gvrt  gPR A N
{ai,a}= a—ai(a),&—aj(a) - a—ayj(a).ﬁ—ai(a) :
(2.59

solution \IIR(t) of the evolution equation provides an ex- This is an infinite-dimensional generalization of the

tremal point of the actiod’ [ WR,¥']. In this important spe-

Lagrange brackeof classical mechanics; s€&| and[31], p.

cial casel'[WR,wL]=0. We may note the equivalent form 250. Itis easily checked to have the properties

of the nonequilibrium action

F[‘I’R,‘I’L]Ef:dt{@l’L(t),‘i’R(t))—H[‘I’R(t),‘l’L(t)]},
(2.48

which shows thatr! is formally a momentundI® canoni-

(2.595

{aj, ai}=—{aj,a;}
and

J 0 J
Fa, Livand a—aj{ak,ai}+ Jar i i}=0. (256

cally conjugate to¥R. In that case, the evolution equation
and its adjoint are formally restated as “Hamilton’s equa-Let us first verify the stated form of the Euler-Lagrange
tions” equationg2.53. The verification follows from the result that
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S . ) more, the parametric Hamiltonian is an integral of motion for
%f dtm(@)ei={a;,qj}ta;. (257  the evolution equations. Notice that if the nondegeneracy
' condition failed at finite time, then the solutions themselves
By a simple calculation to the parametric equat.ions 'might bec_ome ill defined. .
A case of special interest is that in which
A A A LAY yH=vyH(a), H=L,R, with an equal number o&® and
—f dtmi(a)a;= O da; o at| ¥ "daida; | a)- parameters. Observe that the Lagrange brackets are now
given simply as
d
~armita) (2.58 {af . af=(yl ("), (D)) (2.65
However, and
d (ot awRy ) PR {of i} =—(yj(ah).yf(dD), (2.60
dtﬂ-(a B 36!] ’ &ai aj ’c?aiﬁaj i

(2.59 with all other brackets vanishing. It is easy to check that the
' variables#® introduced as

This yields Eq.(2.57). The property Eq(2.55 of Lagrange P

brackets is obvious. Equati@8.56) follows from the expres- R _ L _ % WwR/ AR

sion (2.54) by a simpleqcalculation. P g @)= VH(ah), RV )> (287
If the matrix of Lagrange bracket$d; ,«;}) is nondegen- .

erate, that is, def¢; ,«;}) #0, then we may introduce a cor- satisfy

respondingPoisson brackefa;,«;j] as the elements of the R
inverse matrix [of ] =6 (2.68

([ai,ai)={a;,a}) "L (2.60 that is, 7" is the momentum canonically conjugated8. If
i i R R ob) = R s i ) i L
m(al,a") =7} is invertible at each fixede® for ot in
It is straightforward to show that the Poisson bracket haserms of #z® and a®, then by a change of variables the sys-
properties implied by those of the Lagrange bracket Egstem has canonical Hamiltonian form.

(2.59 and(2.56), namely, As in the static case, there is a criterion of acceptability of
solutions, which requires that“(t)~1 for all timet. Let us

laj,ai]=—[ai,q] (26D consider first, for simplicity, the previous special case with

and wH=vyH(aM), H=L,R. Just as for the statics, we are mo-

tivated to adopt the lineaknsatz
[ai.[a), a ]+ [e).[ax,ail]+[ak.[a;,a;]]=0. N
2.6
(2.62 Ve =1+ 3 abyh0. (2.69
The latter is the well known Jacobi identity. The bracket may

be extended to arbitrary functiorisandg of coordinatesw In this case, the equations fai(t) become
via the definition

— (b yRaP)at=ab(yh LylaR), (270

[f.9]= pz Jar, [ap’aq] (263 i=1,... N, which have as aexact solution

With this definition, the Poisson bracket satisfies E61) a-(t)=0. 2.71)
and(2.62 for all functions. Note that the Jacobi identity for

general functions follows by the argument [&1], p. 257.  Within this sameAnsatzthe equation remaining to be solved
The parametric equations may then be written as for a”(t) reduces to

a=[a; H], (2.6 (ot (o)) af=(yl LIRD). (2.72

which are in Hamiltonian form. In general, canonically con- For this case, a further simplification is possible by introduc-
jugate variables do not exist for this Hamiltonigre., the  ing moment averages

system is a noncanonical Hamiltonjailotice that the Pois-

son bracketd «; ,«;] of the system depend only upon the mi(aR)E<l//iL>aR (2.73
parametrizatior(i.e., the trialAnsatz and that the dynamics

enters solely through the Hamiltonigh(«). We now see and thedynamical vector

very simply that the fixed points of the parametric evolution .

equations coincide with the critical points of the correspond- Vi(aR)E<LT¢iL>aR. (2.74
ing Hamiltonian.(Even without the nondegeneracy condition

the fixed points would include all of the critical points of Because {a",aR}=(am, lda; RY(a?) for the Ansatz Eq.
‘H, although there might be additional fixed pointsurther-  (2.69), it follows that
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L oM. : and
{aF ,aF}a}?:r.[fea?: m; . (2.795
H(aR,a") =2, at(Ly)ama™. (2.84
Therefore, the equation of motion E(R.72 expressed in ( %1 n(bn)amtm

terms of the moments becomes simply _
Therefore we see that® and #"=a' are canonically con-

m;=V;(m), (2.79 jugate and the parametric action is a quadratic form

whereV(m)=V(a(m)). In this way we see how “moment .

closures,” as they have been traditionally employed in non- F[aR,aL]=f dtf @-aR— a*-LyaR]. (2.89

equilibrium dynamics, are obtained in our scheme. Closure is

achieved by calculating all averages with respect to the PDIm consequence, the evolution equations are linear

Ansatz Rx,t)=W¥R(x;a”(t)) and then eliminating the pa-

rametersa®(t) in terms of the(equal number ofmoments aR=LyaR, at=-d'ly (2.8

m(t). As we shall discuss in Sec. Ill, this variational method

of moment closure has definite theoretical advantages. for this particularAnsatz The second equation has exact so-
More generally, we may employ th&nsatzEq. (2.33, lution ah(t)zémo. The first equation is a standard Galerkin

Prt=1+3,_;Nal ¢t (a), and ¥R=¥R(a), allowing for truncation of the linear Liouville dynamics E¢L.1).

some parameter dependence of the moment functions

lﬂ:'(a) This choice is considered in the Appendix, so here I1l. CONSTRAINED VARIATION
we just report the results. As with the case previously con- AND EFFECTIVE ACTION
sidered, it is not hard to check that(t)=0 is an exact o . .
solutionof its equation. The remaining equation fartakes A. The principle of least effective action
the form For spatially extended systems, or for any system with
L . large numbers of degrees of freedom, it is certainly too am-
{ai,ajta;=Vi(a), (277 bpitious to try to calculate the full PDF. Such a calculation

would put any trialAnsatzto an extremely severe test and

could hardly be expected to succeed, in general, with a few
Vi(a)5<|:T¢='(a)>a, 2.78 number'of parameter; In any case, the' physical interest is

usually in some special low-order statistic, such as a mean
generalizing Eq(2.74, and field or a correlation function. Such quantities are repre-
sented by random variableson microscopic phase space,

with

L L JWR that is, by functiong=z(x) of the dynamical variables. In
{ai ajt={ ¢ (@),———(@)). (2.79  practice, one will be mostly interested in some simple low-
! order moments of the dynamical variablethemselves, e.g.,
By an easy calculation one can see also that Z=X, X®X, etc. It should be pOSSibIe to SUCCQSSfU”y calcu-

late a statistic of this type with a simpler Ansatz with just a

. J ai/;iL few parameters, if those are insightfully chosen. However,
{ai a5} = @( i (@)a— o (@) - (280  the variational method, as we have described it so far, allows

! ! @ one to calculate such a low-order statistic only as the by-
product of calculating the full distribution. One would like to
have a more direct variational method for any statistic of
jnterest.

In fact, it is well known in various contexts that statistical
oéjantities such as expectations and correlations, are charac-
terized by a minimum principle for a certain functional. In
(Euclidean field theory this functional is called the “effec-
tive action,” and was originally rigorously investigated by
Symanzik in[17]. In nonequilibrium statistical mechanics

A comparison with Eq.(2.11) in the work of Bayly[28]
reveals that the equatioi2.77) obtained via theAnsatzEq.
(2.33 is equivalent to the dynamical equations obtained b
“moment projection” in the parametric PDF closure
scheme. Here these equations are simply shown to have
variational formulation.

As in the static case, a useféinsatzis provided by a
fixed trial weightw(x) and orthogonal expansions

N-1 the variational principle associated with the effective action
YRR =wD, afp, (2.8)  was pointed out some time ago by Grahgh8]. The fact
n=0

that averages of suitable distributions are characterized by a
minimum principle is also standard in probability theory; see

and Sec. 3 of{32]. Such a principle has a very general basis and
N—1 indeed its origin is the same as that of the familiar equilib-
Ph(ah)= L. 28 rium variational principles of maximum entropy, minimum
() nzo %nPn (282 free energy, etc. Closely related ideas have been exploited
recently to develop moment-closure hierarchies for kinetic
In that case it is easy to calculate that theorieg 33]. We shall give here a self-contained discussion

L R RL of the least-action principle, following the accounts in
{an.ant=—{am a5} = onm (2.83 [17,32.



3426

The main requirement for its validity inite exponential
moment®f the statistical distribution. Let us denote Bythe
probability measure ohistoriesof our stochastic dynamics.
Thus, P, is just the projectior{for margina) at timet of the
distribution P. Then, what is required is that, integrating
over the ensemble of historig¢g(t): —oo<t<+o},

f DP(x)ell ¥ < oo, (3.1

where f(t) is a real-vector valued test function and
(f,2)= [dtf(t)z(t). If Eq. (3.1 holds, we may define

W[f]=In (3.2

J DP(x)e"?

which is a cumulant-generating functional of the distribution

GREGORY L. EYINK

the full action by defining, for any time-independentthe
time-extended historyg(t) by

ifo<t<T
otherwise.

z

z(t)= (3.8

z
Then the effective potentiaf[x] is defined as the infinite-
time limit

I'[z]
T

V[z]= lim

T+

(3.9

The effective potential is appropriate to determine expected
values in the time-invariant ground state of the theory
QR=pPg.

The effective potential has a direct significance in terms

P. Itis a consequence of the positivity of the distribution andof the statistics of thempirical time average

the Hdder inequality that

f »DIP(X)e[)\fl-%—(l—)\)fz ,Z)

A 1-\
s( f DP(x)e(fl*z)) ( f DP(x)e(fZ'z)) (3.3
for O<A<1, or
WA+ (1= N ]<AW[f ]+ (1-NW[f,]. (3.4

1T
z= Tfo dtz(t). (3.10

For an ergodic process, this random variable converges as
T— to the ensemble average,—z, almost surely in ev-

ery realization. However, fluctuations away from the ex-
pected behavior should furthermore occur with a small prob-
ability, decaying asymptotically for largé as

Prol(zr~z)~exp(— TV[z]). (3.11)

In other words W[f] is a globally convex functional of its Thjs is a refinement of the standard ergodic hypothesis. It
argument. Observe that this is a result just of a simple reakyjj hold when the limit in Eq.(3.9) exists or, equivalently, if

izability inequality for the distributior?. The corresponding
conjugate convex functional is

T{z]=sug(1.2) - W]} (3.5

This is the definition of theeffective actiorfor z histories.
Sincel’[ z] is also globally convex under the assumption Eq.
(3.1, it follows that it has an absolute minimuftpossibly
nonunique ifl" is not strictly convex In fact,

I'[z]=0, TI[z]=0, (3.9
where

Z_(t)=fD7’(X)Z[X(t)]- (3.7)
The positivity of T' follows from the fact that

(f,2—W[f]=0 in Eg. (3.5 for f=0. Furthermore, by
Jensen’s inequality [DP(x)e"?]=(f,z). Thus ¢,2)
—W[f]=<0 for all f and sol'[z]=0. That the mean is char-
acterized as the point at whidh achieves its minimum is
just the precise statement of tipeinciple of least effective
action

the similar limit limy_, . (L/T)W[hy]=A[h] exists. These
are standard results of “large deviations” in probability
theory[34,35. In fact, what is in physics referred to as the
“effective potential” coincides for stochastic dynamics with
the (level-1) rate function in the Donsker-Varadhan large-
deviations theory for ergodic Markov processes. The proba-
bilistic interpretation of the effective potential seems to have
been first pointed out in quantum field theory by Jona-
Lasinio [36]. Such a large-deviations hypothesis as Eq.
(3.11 was conjectured some time ago by Takahashi for de-
terministic dynamical systems with sufficiently chaotic solu-
tions [37], and rigorous theorems have been proved under
suitable hypothesee.g., se€38,39). In this context the
effective potential is simply related to the Kolmogorov-Sinai
entropy. The earliest origins of the above fluctuation hypoth-
esis in statistical physics appear in the “Onsager principle,”
as discussed by Oono [A0].

It follows from our assumptions that the effective poten-
tial is non-negativeV(z)=0, convex A,V(z;)+A,V(2)
=V(N1Z;+N52), A+ Ay,=1, and vanishes only at the en-
semble meaW(z)=0.[The structure of the effective poten-
tial may be more complex if there is “ergodicity breaking”
associated with multiple ergodic measures. In that case, there
may be a convex set of pointswith a nonempty interior on

All the derivations we have given for the distribution on which V(z) vanishes. This would be the case if a so-called
historiesP, could just as well be given for the single-time nonequilibrium phase transition occurred. The important ap-
stationary distributiorPg. However, since the latter is hard plications of the effective potential in quantum field theory
to specify, it is easier to work with a quantity derived from appeared precisely in this type of situation, where basic sym-
the effective action introduced above, which is commonlymetries of the quantum Hamiltonian are spontaneously bro-
referred to as theffective potentialThis is obtained from ken by the occurrence of multiple ground states. Similiar
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phenomena may be expected in infinite-volume nonequilib- exqw[hT]):<QL,equf_h)QR>

rium systems, especially in the parameter range after the first

bifurcation from a unique laminar solution but before the ~{(Q QRN QY h],QRexpTA[h]),
transition to fully developed turbulence has occurldd. (3.18
Sec. Il B we develop a practical method for approximately '
calculating the effective potential. Because of the connectioyherer[h] is the eigenvalue of the “perturbed operator”
of the effective potential with fluctuations of the empirical

mean Eq.(3.11), it is very unlikely that a closure approxi- L,=L+h-Z (3.19
mation that violates the basic positivity and convexity prop-

erties of the effective potential can yield a reasonable resulwith the largest real partand QR[h],Q[h] are the associ-
for the ensemble average itself. ated right and left ground-state eigenvectors

B. Variational characterization of effective potential LhmR[ h]>:)\[h]|QR[h]> (3.20

We now show how the effective potentd]z] is related gnd
to the Hamiltoniar[ W R, W] discussed before by means of
a constrained variationA similar result was proved by Sy- [MQL[h]): A*[h]|QL[h]). (3.21)
manzik in Euclidean field theoryd7]. In our case, a modifi-
cation is required associated with the non-self-adjoint charfurthermore, we can see that
acter ofL. More precisely, we have the following.

JWLh
Theorem 1The effective potential (9[1 7] _Tz[h]+o(T), (322
-1 "
V[Z]=T|lrr+1w?F[ZT] (312
for a stationary Markov process is the value at the extremum z,[h]=(Q[h].Z,QF[h]). (323

point of the functional This can be obtained from the formula

V[WR W= —H[WR W], (3.13 [ ] .
expWhe]) <QL )QR>
varying over all pairs of state vectoR, W' subject to the
constraints =(Q% QR h])(Qh],QR)
L R\ —
(W wh)=1 319 < [h], - exp(TLh)QR[h]>
and
) +0(e—m), (3.29
(P, Z¥Ry=2z (3.15

where A\ is the spectral gap between the real parts of the

Here 7 is the operator of multiplication bg(x). Although ground-state eigenvalue and the next highest eigenvalue. We

- ) A ._have used the well known fact that, for any one-parameter
the original version of the theorem required just one trial " S ,
state, there now must l@o independent trial states. family of operatord.(h) depending smoothly on a parameter

Nevertheless, the proof is similar to the original one of

Symanzik[17]. Let QR=P,, Q'=1. Then the generating 5 AL ()
functional W[ h] introduced above may be represented in the ﬁ—hexr{L(h)]=exp[L(h)]<p[—AdL(h)]{

operator formulation by dh |’
(3.25
T . ~
W[h]=|n<Q'-,Tex;{J dtLh(t))QR>: (3.16  where Ad denotes the “adjoint operator” defined by the
0 commutator
whereT denotes time orderin@ncreasing from right to lejt (Adﬂ)[6]=[£ 6] (3.26
and T '
R R R and ¢(z) is the entire function ¢(z)=(e*—1)/z
Ly(t)=L+h(t)-Z. (3.17 =1+ (1/2!)z+(1/3!)z%s- - -. See[41]. Since
No time dependence is required for the coordinate operators (QL[h],[ﬂh ,6]QR[h])=O (3.27

because the exponential factors automatically introduce the

correct Heisenberg picture operators after differentiating andor any operatoO only the first term survives in the expan-
settingh to zero. We note then that forsaticfield h in the  sion of ¢ when substituted into the first term of formula
limit T— + oo, (3.24). This yields Eq.(3.22.
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Now let us consider the variational problem. If we incor- genvalue” of the operatof:hzl:+h~i. The equivalence of
porate the constraints by suitable Lagrange multipliers, thefhese two characterizations follows from the preceding for-
the variational equation is just mal proof. The representation of the potenWak] as a Leg-

~ - endre transform of[h] is entirely analogous to the repre-
oL~ (WhL¥R)~ h'<\I’L'Z\I’R>+7‘<\PL'\PR>]:O3 5 sentation of the entropy in equilibrium lattice spin systems as
(328 the Legendre transform of the free energy, where the latter is
or determined as the leading eigenvalue of the transfer matrix.
) ) For deterministic dynamics the existence of a spectral gap in
(8P (Ly=N)PRY+ (WL (L,—\)6¥R)=0. (3.29 the so-called Perron-Frobenius operator has been established
only for a few special cases, such as the work of Pollicot and
In other words, there are infinitely many stationary points ofRuelle on Axiom A system$44]. The eigenvaluer[h] in
the functionalV[WR, W] subject to the constraints. They that context is a particular case of the topological pressure
consist precisely of pairsi[h], ¥}[h]) of eigenvectors of  P(¢); see[39] (or [43] for an introductiop. For example, in
Ly, the work of Ruelle[42] on expanding map$ of compact
. spacesX, the effective potential would coincide with(¢)
Lo PR h])=\,[h]|¥Rh]) (3.30 for the choicep(x) = —In|f’(x)| + h-z(x). Here|f'(x)| is the
Jacobian determinant of the map and its logarithfi (r)| is
and the Hamiltonian in the thermodynamic formalism for ex-

- anding maps.

L Senn) =\2[h)wh), @3y oM
corresponding to different branches of eigenvalues C. Rayleigh-Ritz approximation of the effective potential
N\, [h],»=0,1,2, ... . To be precise, we should consider the We outline a simple variational method of Rayleigh-Ritz
stationary point corresponding to the branch with largest redlype to approximate the effective potential and thereby the
part for eachh, that is, the pair of ground-state eigenvectorsensemble means. Thansatzused previously for¥’R Wt
(QR[h],Qh]) introduced above. For small enoughthis  may need to be replaced by “augmentadsat? WR Wt
corresponds to the eigenvalue branch wi{{®) =0 because The reason is that the left ground state under the imposed
the spectrum oL is all in the left half of the complex constraint, is no longer 1 identically and the constant com-
plane, R& <0, except for a simple eigenvalueXat0. See ponent must be allowed to vary. In other words, we must
[25] and [26]. We refer to this as the “zero branch” of augment the lineaAnsatzEq.(2.33 for the left ground state,
eigenvalues. by setting

Applying then the left eigenvector to the eigenequation of N
the right vector and using the constraints gives \PL(a,aL)=E aiLlﬁiL(a)- (3.39
(Qh],LOR[A]) +h-Z[h]=A[h] (3.32 e
Here the test function

Yh(x;a)=1 (3.36

and thus

—(Qh],LARh]) =h-z[h]—\[h]
is included with an adjustable parame&r%r. Of course, with
+0(1) the orthogonal expansiofinsatzEgs. (2.35 and (2.36), the
constant term(zero-degree polynomigls already included.
1 However, if it was not originally, it should now be added,
= ?F[ZT]-I-O(l). (3.33 and an additional free parametep should be added to the
PDF Ansatz P=VR(a) as well. The most natural way to do

The first quantity is independent & so that we see, taking SO IS t0 simply replace the normalized densitf=0 by

the limit T— + oo, that —
imit 1= YR(x; @)= agVR(X; @), (3.37

T

1 oW
<thE[hT]>_W[hT]

L R —

(QTh],LOTR]) =VZ], (3.39 where ay denotes an arbitrary normalization factor
as was claimed]

We have given only a formal proof of the theorem with- f dx@(x;?)=ao. (3.39
out a careful statement of the conditions, which would cer-
tainly involve spectral properties of the Liouville operator — . ] o
L, etc. The assumption of a spectral gap may be strongeﬁfc?‘”se\l’ #1 under. the congtralnt, unit normal|zat|on_ gf
than required. The above variational characterization of th&" iS no longer required, but instead the overlap condition
effective potential is, in fact, equivalent to a spectral charac{¥",WR)=1 must be maintained. Notice that we use the
terization of the potential that has been rigorously estabnotations a,a" simply to indicate the parameter vectors
lished in the Donsker-Varadhan theof$5,34,33. In that  a,a* along with the additional zero componem,ag. We
case it is shown, under suitable conditions, thatshall refer to theAnsatzEgs.(3.37) and(3.35 as thenatural
V[z]=sup(z-h—\[h]), whereA[h] is the “principal ei- augmentationWhile others can be contrived, this is the sim-
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plest extendedAnsatzand likely to be the most generally within an approximation such as that we consider here, these
useful. (Despite this, some of our arguments below do nottwo quantities need no longer coincide, although both exist.
apply to the natural augmentation. We will point out whereAn eigenvalue branch (a,h) such that\ (a,0)=0 exists

this occurs later in the discussion. This is really a technicahlways with the associated eigenvecier= 8, at h=0.
issue, since all of theesultsdiscussed hereinafter still hold Likewise, an eigenvalue with a real part, denon;T,h), of

for the natural augmentation and it is only the proofs thatlargest value will certainly exist. Because the two quantities
need to be changed somewhat. Rather than complicate thga,h) and A(a,h) are possibly distinct, either may be
discussion, we have decided to present proofs under the simausibly used as the basis of an approximate calculation.
plest assumptions. These are satisfied, for example, by theowever, there are compelling reasons to prefer the use of
orthogonal expansionsatz The natural augmentation is ) (a,h). Most importantly, it is only due ta.(a,0)=0 that

discussed in detail elsewhei#5].) Note that it is not neces- ', (0)=a, coincides with one of the fixed points of the

sary to have a closed-form expression %, but it is  p= g vector fieldV(a) (see below Also, as a practical mat-
enough only to be able to calculate averages such as ter, it will generally be easier to compute(a;h) than

preyiw SV I (W A(a,h), whose calculation requires a determination of the
(@)= (v (@) (339 entire spectrum ofA(a,h). Actually, all of these consider-

and ations are rather academic. Af(a,h)>\(a,h)=0 ath=0,
_ . then the stability matrix{V/Jda)(a) =[A(a,0)]" has an ei-
V(Zh)z(LMf(?));, (3.40 genvalue with positive real part. If this were to occur at the
starting pointe, , that point would be linearly unstable un-
with i=0,1,... ,N. In the most practical PDF closures, the yer the dynamical flow of the vector fieM(a). That alone

Ansatz¥ R(x; @) will be given, not explicitly, but instead by would be enough to disqualify the poilal, from physical
averages w?th respect to “surrogate” random variaﬂgs interest. On the other hand, if(a,h)=\(a,h) at h=0,
whose distributions are parametrized ly From the joint  then except for degenerate cases, this will also be true in a
Ansatzfor ¥", H=L,R, an approximation to the effective small interval ofh about0 and no distinction need be made.

potential is then obtained: It will be explained below that the approximate potential
— ~—h V, (2) calculated from\ (a,h) necessarily has the approxi-
Vi (7)== (¥, LT), (34D mate mean
where WL =W (ay (h),ak (h)) and ¥R =¥R(a, (h)) and - .
the parametere’; (h),a, (h), andh=h, (z) are to be deter- Z*Ef dxz(x) Q4 (x) (3.46

mined as follows.

Incorporating as before the constraints by suitableas a critical point, withv, (z,)=0, but thatV, (z) need no
Lagrange multipliers. andh, the extremum point within the longer be convex at, .
Ansatz is obtained by varying the function Returning, then, to the specification of the approximation

— C — — scheme, we next determing, (h) as the value ofx satisfy-
F(a,a")=—(¥"(a,d"),Ly¥ (@) + (V' (a,a"), ¥ (@)  ing the variational equation under the parametgrs

(3.42 o
of the parameters, a*. First, by variation of thew param- Vilah=A(anmi(a), (349
eters, one obtains the equation i=0,1,... ,N. This may be thought of as a type of “nonlin-
— T — ear eigenvalue condition” and, (h) as the associated ei-
Alah)-a"=\B(a)-, (343 genvector. Sinca(«,0)=0, it is a consequence of this defi-
with the matricesA(a;h) andB(a) defined by nition that
9 —_ a,(0)=a, (3.48
Ajj(a,h)= —=Vj(a,h) (3.44

da with e, a fixed point of the dynamical vect®f(a) defined
and in Eq.(2.74. As long as the stability matrixaV/da) (e, ) is
nonsingular, the implicit function theorem guarantees that
9 Eq. (3.47 has a solution for at least some small interval of
= Z—mj(@) (3459  h aboutO. (This is the property that is not satisfied by the
“natural augmentation.” In fact, it is not hard to show that
fori,j=0,1,... N. Equation(3.43 has the form of ggen-  With that choice
eralized eigenvalue problefi24,46. The parameter vector

aF(a,h) is to be determined as the generalized eigenvector N 00
associated to the leading eigenvalue. (?——(a*)= 0 NV (3.49
However, the proper definition of this last quantity re- @ 5(0‘*)

quires some discussion. In the original infinite-dimensional

setting, the “leading” eigenvalue was defined to be that withClearly, this matrix is singular. However, as we have already
largest real part and fdr small enough it coincides with the noted, it is only the present proofs that fail and the results
zero branch passing through 0 flo= 0. On the other hand, themselves, proved here assuming nonsingularity, still hold
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for the natural augmentatioj#5].) For practical computa- _ o N

tion, a Newton-Raphson or other root-finding algorithm may (\Ifi(h),Lh\Ifff(h )= E *,(h)V (a, (h),h)

be employedsee[47], Chap. 9, starting witha, ath=0 1=0

and tracking a sequence of roatg (hy) iteratively forh, of

increasing magnitude. If the startidgsatz¥R, W' has more (h) >, at.(hym;(ay (h))
than one acceptable fixed point, then any of them may be =0
used as a basis for the calculation. Nexg-(h) is defined as =, (h) (3.59
a*(a, (h),h) with its normalization fixed by the constraint R '
(P, L WR Y=1. This allows one to define the function

z

where the first line follows using the lineAnsatz Eq.(3.54)
above, the second line follows from the nonlinear eigenvalue
condition Eq.(3.47), and the last line follows from the over-
lap condition Eq.(3.56. Now it is easy to see that

z, (N)=(V(a, " (h), &, (), Z¥R(a, (h))) (3.50

and to determiné thereby as the value, (2) of its inverse
function atz. It should be remarked that bot, (h) and — ~— — ~—
a% (h) are real vectors, at least for small enouigh and Vi (2)= = (W (h),LYL(h)=(V¥(h),Z¥; (h))-h
thereforez, [h] is a real vector too. The eigenvalué a,h) oL ~ TR _ he

will be real for h sufficiently near0 and, in that case, the (W (), L, () =2z, () -h=A, (h),

associated generalized eigenveatd( a,h) for the real ma- (3.59
trices A(a,h),B(a) will also be real. We observe fdr=0
thatz, [0]=z, . which is Eq.(3.53.

These prescriptions complete our recipe for the Rayleigh- The verification of Eq.(3.52 is a straightforward but
Ritz approximation to the effective potentid(z). We now  somewhat tedious calculation. Using once more the basic
establish an important representation Ygr(z). Let us de- expression Eq3.57 for A, (h), one finds by differentiation

fine that
N« (h)=X\(a(h),h) (3.51 N gVt _
* * ~ R
: L h)=z h)+< h),LpW h)>
in terms of the quantities introduced above. We now prove oh ( ol dh ( ¥
the following IR
Proposition 1 The approximate effective potential +<‘?L(h) ~ IV (h)>. (3.60
V,(2) is a formal Legendre transform af, (h) that is, h

0{;\; (h=z, () (352 Furthermore, calculation yields for the second term
A —
and o (LaPic(h)
Vi (2)=2,(h)-h=X, (h) (3.53 N N
h) | A, (hymi(a, (h))+ >, ati(h
for h=h. (2). =2 (ah ali( )) w(m (@ () + 2, el (h)
Proof. Setting _
T ¢| (9
_ N Liy(a )] —2 (), (3.60
WL 06h) =2, ey (a () (354 o
where the nonlinear eigenvalue condition E§.47) was
and used in the first sum on the right-hand side. Likewise, for the
— — third term in Eq.(3.60
VE(xh) =W (x;a, (h), (3.55
_ _ o _gR N
we observe the overlap conditignPt (h), %% (h))=1 be- <qfi(h),|_h * > E at (h)a, (h)( m(a*(h)))
comes simply h =0 dh
N 2 h
3, Gk (hym(a, (h)=1. (3.56 2 i)
+ 9
We next show that ><< ——J(a*(h))>
— R . ()
(W (), LyWZ(h) =), (h). (357

In fact, ><W(h), (3.62
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where the generalized eigenvalue equafi®®3 was used and
in the first sum on the right-hand side. Adding the two con- o .
tributions, the last terms of each cancel and the result is Vi(m,h)y=(L{y-(m))m, (3.68

8@ -~ —5 — N 8\175 Once a@in}x(rr_nh) may be taken as the leading eigenvalue
oh (h),LaW (h) ) +{ Wy (h),Ly oh (h) and o~ (m,h) its associated eigenvector. Likewise, an equa-
tion may be obtained fom, (h) by varying a*, which is

N 9 o now simply
=2 (ﬁ—hEEim) Ny (MM (@, () +ak (A, (h) B
- V(m,h)=x(m,h)m. (3.69
J
X %mi(a* (h)) With these additional simplifications, the procedure to calcu-
late V, (2) is otherwise the same as before.
o[ N In calculating the approximatio¥, (z) by the Rayleigh-
=N (h)—| > EEi(h)ﬁ(E*(h))} Ritz method, one obtains as well approximations(8,
dhli=o H=L,R. Since it requires more work to impose the con-
—0. (3.63 straints, it may seem that nothing has been gained and even

something has been lost. However, a moderately gdod
H H : R
The constant overlap E€3.56 was invoked in the last line. S&tZ¥"(a,a”) may yield rather poor results fé™ and yet

Thus @\, /oh)(h)=z, (h). It may be worth remarking that quite good results foz. It is useful to calculate the effective
this result is a nonlinear generalization of the Hellmann-Potential from theAnsatzas a diagnostic since the qualitative

Feynman theorem used in quantum-mechanical perturbatidigatures should be reproduced such ¥a{z)=0 and that
theory.J z, is a minimum point oV, with V_(z,)=0. If one’s only

It is a consequence of this proposition that in';ere.st is in the mean values, then t_hesg are more reglistic
criteria of acceptability of the approximation than to insist,

L e.g., that¥', R=0 everywhere. Negative density in an insig-

(z,)=0. (3.64 nificant region ofx space might have very little effect on the
approximate averagg, , which could be quite close to the

Indeed, since, (0)=2, and\, (0)=0, the first follows di- true average. On the other hand, a failure of convexity of

rectly from Eq.(3.53. For the second, we use the simple Yx(2) would doubtless indicate serious errorszp as an
result of Eq.(3.53 that approximation toz. Such a “prediction” would need to be

discarded as spurious. The condition of convexity of the ef-
v, fective potential is not contained in any property of the clo-
(2)=h,(2) (3.65 sure dynamics and it incorporates important additional infor-

9z mation from the exact Liouville dynamics.

*

0z

V*(Z):O,

andh, (z,)=0. Hence we conclude that the properties Eq.

(3.64), which hold for theexacteffective potential, are auto- D. Variational characterization of the effective action

matically guaranteed to hold in the Rayleigh-Ritz approxi- \We now show that the time-dependent effective action

mation. However, the important property ebnvexityof  can also be obtained by a constrained variation of the non-

V,(2) is not guaranteed. All that can be inferred from Eg. equilibrium action functional [ ¥R, ¥]. The proof of this

(3.53 is thatV, (2) is convex inz if and only if A, (h) is  theorem is almost the same as the proof of a corresponding

convex inh. result in quantum field theory due to Jackiw and Kerman
Let us first note, however a useful simplification. As dis-[19]. Just as the Symanzik theorem is a constrained version

cussed in Sec. Il B, it is very convenient here also to replacef the familiar quantum variational principle for energy ei-

the parametera by the momentsn. Assuming that the ma- genvalues and eigenvectors, the Jackiw-Kerman theorem can

trix B(a@) =dm/da defined in Eq(3.49 is nonsingular, then be seen as a constrained version of Dird&} variational

the relationm=m(a) may be inverted, at least locally, to formulation of the Schidinger equatior(a quantum analog

give a(m) as a function ofm. Therefore, then may be used of Hamilton’s principle. In addition to providing a basis for

as parameters instead of they, writing as well time-dependent Rayleigh-Ritz calculations, the Jackiw-

JH(m) =yt (a(m)) and ¥R(m)=P¥R(a(m)) without any Kerman-type theorem establishes the existence of a Lagrang-

possibility of confusion. In this case, the equation obtainedan functional for the effective action.

under variation of then parameters reduces to an ordinary = Theorem 2The effective actiod’[z] for the initial-value

eigenvalue problem problem is the value at the extremum point of the functional

A(m.h)-a"=)d, (3.69 T[WR W= fowdt(WL(t),(&t—E)WR(t)> (3.70

with the matrixA(m,h) defined similarly as before:

when that is independently varied over all pairs of time-

ﬁ [— . .
L V,(mh) (3.67 f[jisq%etndent state vectors subject to the constraints for each

Aij(n_],h)zam‘
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(1), PR(t))=1 3.7 ®
(FHOATW) @73 |Q'—(t)>=exr{J ds\*(s) || Ph(t)). (3.84
and !
Lipy SR — Substituting these into E@3.75 and using the overlap con-
(WH(0),29H0) =2(v), 8.72 straint, we obtain the expression for the cumulant-generating
and also to the boundary conditions function,
[WR(0))=Po, [Wh(x))=1. (3.73

W[h]=f din(t)
Proof. As in the static case, we use the representation °

-~ f dt(WL(t),[ — g+ L+h(t)-Z]¥R(t)).

(3.89
The last equation was obtained by applyi#(t) on the

W[h]=ln<Q'-,Texp( J’:thLh(t))QR>a (3.74

where I:h(t)=I:+h(t)-2 as before but nowQR=P,

Q=1 In other words, left-hand side to Eqg. (3.81). Note that, indeed,
WIh]=In(QL (1), QR(1)), (3.79 SW[ h]/sh(t)=z(t) by a simple calculation
where oW[h] o SVL(s)
t W—z(twrfo ds[)\(s)< 3h(D) ,‘I’R(S)>+)\(S)
|QR(t)):Texp( fodsALh(s)>|QR> (3.79 ) SUR(s)
B ><<‘I’ (S)’—éh(t) >
and, if T denotes “antitime ordering,” .
e . =z(t)+ f d9N(S) g7 (¥ (9. ¥ F(s)
|QL(t)>=Tepr dng(s)>|QL). (3.77 0
' =27(1). (3.86

These trajectories are the solutions, respectively, of the i o
initial-value problem To obtain the first line we used Eq8.81) and(3.82 and to

obtain the last line we used again the overlap condition. We
g QRY=Ly()]|QRD), QRO0)=P, (3.78 therefore get directly from E(3.85 that

and of the final-value problem F[Z]Ef dth(t)-z(t)—W[h]
0

FHOMt)=—LIm|Qt M), OY=)=1. (3.79

On the other hand, the variational problem can be solved :f dt(Wh(t),(a,—L)WR(1)), (3.87)
. . 0
by the use of Lagrange multipliers for the time-dependent

constraints as was claimed.]

- . As remarked above, the quantity
5(F[WR,WL]—f dtfh(t) (¥ (t),Z¥R(t)) — (1)
0

LO=(THD),(3—L)TR(D)) (3.89
x(qu(t),qu(tm) =0, (3.80 can be taken as a Lagrangian functional in terms of which
I'=["*dtL(t), i.e., a time density for the effective action.

On the basis of this theorem a practical Rayleigh-Ritz

yielding scheme may be devised. If the variation described in the
i Rip\ R theorem is carried out within a finite-parametersatzsuch
(o= Lu(OIPH(D)) = —AOFHD) (381 as Eq.(2.50 for ¥", H=L,R, then the problem reduces to
and determining stationary points of a parametric action

Lo+ LEOIPE @) =2 (0] ¥H ). (382 Ilah]= f:dt{wi@(t))&i(t)—H(E(t))—h(t)-

In that case we see that _ _
X[ Z(a(t))—z(t) ]+ N (O[Ma(t))— 1]},

|WR(1)) (3.83 (3.89

which incorporates the constraints by Lagrange multipliers
and h(t),A(t). We have defined

|QR(t)>=exp{ ftds)\(s)
0
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—_ LS S TR w
Zul @)= (Y (@2, ) (390 2= [ atz 0hm-n 01 (699

and

This can be compared with the approximate effective poten-
tial in Proposition 1. If we define the approximate generating
As in the static case, thansatzEqgs. (2.50 may need to be functional W, [h]= fodtx, (1), then it also follows as in
“augmented” to allow for the fact that’'(t)#1 when Proposition 1 that

h(t) #0. We will consider here briefly just the simplest situ-

: o S oW, [h]
ation, where¥"=vH(aM), H=L,R, with ¥* given by Eq. 5h—(t):Z*“(t)'
(3.39 and '[heéR parameters taken just to be the correspond- ®
ing momentsm, as in Eqs.(3.66—(3.69. In this case, the Thys the approximate effective action from the Rayleigh-

Ma)=(V'" (@), YR(a)). (3.9

(3.100

parametric action takes the form Ritz method, Eq(3.97) or (3.99), retains the Legendre trans-
" o form structure of the true effective action. It is not hard to
F[rT_I,EE;h]Ef dt[ (1) -m(t) — ar(t)-V(m(t),h(t)) derive from this fact that
0
— _ or,
+N (D) (" (1) -m(t) - 1)], (3.92 I, [z.]1=0, %[Z*FO, (3.109

neglecting some terms independent of the parameters beirc/gne

varied. The corresponding Euler-Lagrange equations are rez, (1) =(2)my is the expected value af in the PDF

Ansatzcalculated along the trajectorﬁ(t)_of the moment
r‘?1(t)=\7(n_1(t),h(t))—)\(t)ﬁ(t), (3.93 closure. Hence the predicted mean histafyt) is guaran-
teed to be a stationary point &f, [z], but not necessarily a
a-()+AM(t),h(t)a () =A(H)a" (1), (3.949  minimum point. , , .y
Recently, an alternative nonperturbative approximation to

a-(t)-m(t)=1, (3.95 the nonequilibrium effective action has been developed by
Crisanti and Marconj48] via a dynamical Hartree approxi-
with the boundary conditions at initial and final times mation. While the two approximation schemes are similar in
_ _ spirit, there are essential differences between them. We
m(0)=mp, a"(+*)=(10), A\(+%)=0. present here no detailed comparison of the two techniques.

(3.96 However, we believe it is a virtue of the present method that

These equations should be compared with their static couﬂ?— aIIowts atr_1 ?pp:r?'ximatigglggthe teftfﬁc;[ive acl';ion and effgc-
terparts Eqs(3.66 and(3.69. For a specifiedh(t), thistwo- Ive potential withinany nsatzihat may be proposed.

point boundary value problemay be solved numerically by Furthermore, it makes direct connection with the moment-
standard methods; sdé7], Chap. 17. For smalh(t), the closure equations that have been traditionally used in non-

best numerical scheme is probably the relaxation method bee_qu_ilibrium sta_tis_st.ical dy_namics. We _belifa_ve that the combi-
cause an exact solution is known for the systerh(&}=0 nation of flexibility to incorporate intuitive guesses and
corresponding to a solutiom(t) of the moment-closure o]y- transparency of the physical interpretation should give the

namics with specified initial datam(0)=m, and to present method far-reaching applications.

aF(1)=(1,0), A (t)=0. This known solution forhy(t)=0

may then be input as an initial guess into a relaxation algo- ACKNOWLEDGMENTS

rithm to find the solution with some smdih(t), and, itera- | would like to renew my thanks to all parties acknowl-

tively, a sequence of solutions with(t) of increasing mag- edged in Ref[11]. | wish to give special thanks to the fol-

nitude constructed. In this Wa_y, the fluctuations around th%wn']g F. J. Alexander, whose collaborative work on nu-

predicted dynamical trajectomn(t) of the moment closure merical implementation of these ideas has helped to sharpen

may be explored in the Rayleigh-Ritz method by varyingthem considerably; B. Bayly, who generously made available

h(t). The method then yields an approximate effective actiomis own work prior to publication, which overlaps ours in
. many points; C. D. Levermore, who shared insights from his

F*[z]zf dt[EE(t)-rﬁ*(t)—E&(t)-Wﬁ(t))], relaltgd moment—closure methodg in kinetic theory and, .in
0 addition, pointed out the Hamiltonian form of our parametric
(3.97  equations(2.64; and, finally, Y. Oono, who made many

) o — ] o critical and useful suggestions during the formative period of
in whichm, (t), &, (t),\, (t) are solutions of the initial-final  his variational method.

value problem Egs(3.94 and(3.95, with h(t) selected so

that APPENDIX: GENERAL VARIATIONAL EQUATIONS

Z, ﬂ(t)zc_ui(t)-z*u(t) (3.98 The most general trial Ansatz has the form
B _ VH=wH(a,a), H=L,R, with N-~=N+NR. In this case,

equals  the_ specified z,(t). We have defined the parametric Hamiltonian is calculated as

Z*,u(m):<z,u.¢L>rW-

Equivalently, the approximate action may be written as H(a,aR, ab) = (V' (a,a"),LTR(a,a?)). (A1)
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Correspondingly, the fixed point conditions are

%(a,aR,aL)=(¢:‘(a,aL),I:‘I’R(a, a?))

=0, (A2)
(a8, ah) = (V- a), LU, 0)
=0, (A3)
and
oH A R
a_m(a,aR,a)') = <a—ai(a,a|‘),L‘I’R(a,aR)>
R
+<‘I’L(a,aL),|:%(a,aR)>=
(Ad)

with yH'=(s¥"sal'), H=R,L. Within the sameAnsatz
the parametric evolution equations have the form

(e i e ot (k= T (e ),
(15)
{af,aj}dﬁ{af,a}}d%%(a,aﬂaw, (AB)
and
{ab i (o aftaf= S (@aa). (D

The most generahnsatzof any obvious utility is that given
in Eq. (2.33:

N

\IfL=1+_Zl atyt(a), YR=TR(qa). (A8)

This may be thought to correspond to the previdussatz
with NR=0, N:=N, and a linear dependence ¥f- on the
a*. For this case, the parametric Hamiltonian is

GREGORY L. EYINK

N
H(a,aL)Z_Zl aVi(a (A9)

with Vi(a)=<I:T¢iL(a)>a the dynamical vector field in the
parameter space, as in E§.78. The fixed point conditions
are simply

Vi(a@)=0 (A10)
and
Vv
i ﬂ—(a/) 0 (Al
fori=1,... N. When the stability matrix at a fixed point

«, of Eq.(A10) is nonsingular, dg{oV/dea)(ea,)]#0, then
the only solution of Eq(A11) is a-=0. The parametric evo-
lution equations within the sam&nsatzare

{ai aj}aj+{ar aj}a;=Vi(@) (A12)
and

Lav

P (A13)

{all ]}a = Q; a)

where the Lagrange brackets are

Iy Iy
<a—0:<a>,wf‘<a>>—<a—0:<a>,wf*<a)>
(A14)

N
1a ,Olj}: 2 ak
k=1

and

{ar,a)}=(¢i (@), yf(@), (A15)
with now ¢R=g¥R/ga;. Equation(A13) clearly has the
constant solutiona*(t)=0. Equation (A12) then has the
same form as Eq2.77). It is also identical to Eq(2.11) in
the work of Bayly[28], but here derived by the variational
method.
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